Fragment-based drug discovery (FBDD) has successfully led to approved therapeutics for challenging and "undruggable" targets. In the context of FBDD, we introduce a novel, multidisciplinary method to identify active molecules from purchasable chemical space. Starting from four small-molecule fragment complexes of protein kinase A (PKA), a template-based docking screen using Enamine's multibillion REAL Space was performed. A total of 93 molecules out of 106 selected compounds were successfully synthesized. Forty compounds were active in at least one validation assay with the most active follow-up having a 13,500-fold gain in affinity. Crystal structures for six of the most promising binders were rapidly obtained, verifying the binding mode. The overall success rate for this novel fragment-to-hit approach was 40%, accomplished in only 9 weeks. The results challenge the established fragment prescreening paradigm since the standard industrial filters for fragment hit identification in a thermal shift assay would have missed the initial fragments.
Potential inhibitors of a target biomolecule, NAD-dependent deacetylase Sirtuin 1, were identified by a contest-based approach, in which participants were asked to propose a prioritized list of 400 compounds from a designated compound library containing 2.5 million compounds using in silico methods and scoring. Our aim was to identify target enzyme inhibitors and to benchmark computer-aided drug discovery methods under the same experimental conditions. Collecting compound lists derived from various methods is advantageous for aggregating compounds with structurally diversified properties compared with the use of a single method. The inhibitory action on Sirtuin 1 of approximately half of the proposed compounds was experimentally accessed. Ultimately, seven structurally diverse compounds were identified.
The Virtual Screening (VS) study described herein aimed at detecting novel Bromodomain BRD4 binders and relied on knowledge from public databases (ChEMBL, REAXYS) to establish a battery of predictive models of BRD activity for in silico selection of putative ligands. Beyond the actual discovery of new BRD ligands, this represented an opportunity to practically estimate the actual usefulness of public domain "Big Data" for robust predictive model building. Obtained models were used to virtually screen a collection of 2 million compounds from the Enamine company collection. This industrial partner then experimentally screened a subset of 2992 molecules selected by the VS procedure for their high likelihood to be active. Twenty nine confirmed hits were detected after experimental testing, representing 1% of the selected candidates. As a general conclusion, this study emphasizes once more that public structure-activity databases are nowadays key assets in drug discovery. Their usefulness is however limited by the state-of-the-art knowledge harvested so far by published studies. Target-specific structure-activity information is rarely rich enough, and its heterogeneity makes it extremely difficult to exploit in rational drug design. Furthermore, published affinity measures serving to build models selecting compounds to be experimentally screened may not be well correlated with the experimental hit selection criterion (in practice, often imposed by equipment constraints). In spite of this, a robust 2.6-fold increase in hit rate with respect to an equivalent, random screening campaign showed that machine learning is able to extract some real knowledge in spite of all the noise in structure-activity data.
The differential scanning fluorimetry (DSF) screening of 5.692 fragments in combination with benzenesulfonamide (BSA) against bovine carbonic anhydrase (bCA) delivered >100 hits that either caused, on their own, a significant thermal shift (ΔTm, °C) in the protein melting temperature or significantly influenced the thermal shift observed for BSA alone. Three hits based on 1,2,3-triazole moiety represent the periphery of the recently reported potent inhibitors of hCA II, IX and XII which were efficacious in vivo. Such a re-discovery of suitable BSA periphery essentially validates the new fragment-based approach to the discovery of future CAIs. Structures of other validated fragment hits are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.