The management of risk in business processes has been the subject of active research in the past few years. Potentially, many benefits can be obtained by integrating the two traditionally separated fields of risk management and business process management, including the ability to minimize risks in business processes by design and to mitigate such risks at run time. While there has been an increasing amount of research aimed at delivering such an integrated system, these research efforts vary in terms of scope, goals, and functionality. Through the systematic collection and evaluation of relevant literature, this article compares and classifies current approaches in the area of risk-aware business process management in order to expose and explain current research gaps. The process through which relevant literature was collected, filtered, and evaluated is also detailed. Finally, a research agenda is proposed.
Abstract. Effective risk management is crucial for any organisation. One of its key steps is risk identification, but few tools exist to support this process. Here we present a method for the automatic discovery of a particular type of process-related risk, the danger of deadline transgressions or overruns, based on the analysis of event logs. We define a set of time-related process risk indicators, i.e., patterns observable in event logs that highlight the likelihood of an overrun, and then show how instances of these patterns can be identified automatically using statistical principles. To demonstrate its feasibility, the approach has been implemented as a plug-in module to the process mining framework ProM and tested using an event log from a Dutch financial institution.
Process mining has been successfully applied in the healthcare domain and has helped to uncover various insights for improving healthcare processes. While the benefits of process mining are widely acknowledged, many people rightfully have concerns about irresponsible uses of personal data. Healthcare information systems contain highly sensitive information and healthcare regulations often require protection of data privacy. The need to comply with strict privacy requirements may result in a decreased data utility for analysis. Until recently, data privacy issues did not get much attention in the process mining community; however, several privacy-preserving data transformation techniques have been proposed in the data mining community. Many similarities between data mining and process mining exist, but there are key differences that make privacy-preserving data mining techniques unsuitable to anonymise process data (without adaptations). In this article, we analyse data privacy and utility requirements for healthcare process data and assess the suitability of privacy-preserving data transformation methods to anonymise healthcare data. We demonstrate how some of these anonymisation methods affect various process mining results using three publicly available healthcare event logs. We describe a framework for privacy-preserving process mining that can support healthcare process mining analyses. We also advocate the recording of privacy metadata to capture information about privacy-preserving transformations performed on an event log.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.