In recent years, fuzz testing has benefited from increased computational power and important algorithmic advances, leading to systems that have discovered many critical bugs and vulnerabilities in production software. Despite these successes, not all applications can be fuzzed efficiently. In particular, stateful applications such as network protocol implementations are constrained by a low fuzzing throughput and the need to develop complex fuzzing harnesses that involve custom time delays and clean-up scripts.In this paper, we present SnapFuzz, a novel fuzzing framework for network applications. SnapFuzz offers a robust architecture that transforms slow asynchronous network communication into fast synchronous communication, snapshots the target at the latest point at which it is safe to do so, speeds up file operations by redirecting them to a custom in-memory filesystem, and removes the need for many fragile modifications, such as configuring time delays or writing clean-up scripts.Using SnapFuzz, we fuzzed five popular networking applications: LightFTP, TinyDTLS, Dnsmasq, LIVE555 and Dcmqrscp. We report impressive performance speedups of 62.8 x, 41.2 x, 30.6 x, 24.6 x, and 8.4 x, respectively, with significantly simpler fuzzing harnesses in all cases. Due to its advantages, SnapFuzz has also found 12 extra crashes compared to AFLNet in these applications.
CCS CONCEPTS• Software and its engineering → Software testing and debugging; • Security and privacy → Systems security.
Binary rewriting consists in disassembling a program to modify its instructions. However, existing solutions suffer from shortcomings in terms of soundness and performance. We present SaBRe, a load-time system for selective binary rewriting. SaBRe rewrites specific constructs—particularly system calls and functions—when the program is loaded into memory, and intercepts them using plugins through a simple API. We also discuss the theoretical underpinnings of disassembling and rewriting. We developed two backends—for and —which were used to implement three plugins: a fast system call tracer, a multi-version executor, and a fault injector. Our evaluation shows that SaBRe imposes little overhead, typically below 3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.