The 2-Lagrange multiplier method is a domain decomposition method which can be used to parallelize the solution of linear problems arising from partial differential equations. In order to scale to large numbers of subdomains and processors, domain decomposition methods require a coarse grid correction to transport low frequency information more rapidly between subdomains that are far apart. We introduce two new 2-level methods by adding a coarse grid correction to 2-Lagrange multiplier methods. We prove that if we shrink h (the grid parameter) while maintaining bounded the ratio H h (where H is the size of the subdomains), the condition number of the method remains bounded. We confirm our analysis with experiments on the HECToR (High-End Computing Terascale Resource) supercomputer. This proves that the new methods scale weakly, opening the door to massively parallel implementations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.