Fibroblastic growth factor 23 (FGF23) is a circulating phosphaturic hormone. Inactivating mutations of the endopeptidase PHEX or the SIBLING protein DMP1 result in equivalent intrinsic bone mineralization defects and increased Fgf23 expression in osteocytes. The mechanisms whereby PHEX and DMP1 regulate Fgf23 expression are unknown. We examined the possibility that PHEX and DMP1 regulate Fgf23 through a common pathway by analyzing the phenotype of compound Phex and Dmp1 mutant mice (Hyp/Dmp1(-/-)). Compared to single-mutant littermates, compound-mutant Hyp/Dmp1(-/-) mice displayed nonadditive elevations of serum FGF23 (1912 ± 183, 1715 ± 178, and 1799 ± 181 pg/ml), hypophosphatemia (P(i): 6.0 ± 0.3, 5.8 ± 0.2, and 5.4 ± 0.1 mg/dl), and severity of rickets/osteomalacia (bone mineral density: -36, -36, and -30%). Microarray analysis of long bones identified gene expression profiles implicating common activation of the FGFR pathway in all the mutant groups. Furthermore, inhibiting FGFR signaling using SU5402 in Hyp- and Dmp1(-/-)-derived bone marrow stromal cells prevented the increase in Fgf23 mRNA expression (129- and 124-fold increase in Hyp and Dmp1(-/-) vs. 1.3-fold in Hyp+SU5402 and 2.5-fold in Dmp1(-/-)+SU5402, P<0.05). For all analyses, samples collected from nonmutant wild-type littermates served as controls. These findings indicate that PHEX and DMP1 control a common pathway regulating bone mineralization and FGF23 production, the latter involving activation of the FGFR signaling in osteocytes.
A fundamental feature of cell polarity in response to spatial cues is asymmetric amplification of molecules generated by positive feedback signaling. We report a positive feedback loop between the guanosine triphosphatase Cdc42, a central determinant in eukaryotic cell polarity, and H+ efflux by Na-H+ exchanger 1 (NHE1), which is necessary at the front of migrating cells for polarity and directional motility. In response to migratory cues, Cdc42 is not activated in fibroblasts expressing a mutant NHE1 that lacks H+ efflux, and wild-type NHE1 is not activated in fibroblasts expressing mutationally inactive Cdc42-N17. H+ efflux by NHE1 is not necessary for release of Cdc42–guanosine diphosphate (GDP) from Rho GDP dissociation inhibitor or for the membrane recruitment of Cdc42 but is required for GTP binding by Cdc42 catalyzed by a guanine nucleotide exchange factor (GEF). Data indicate that GEF binding to phosphotidylinositol 4,5–bisphosphate is pH dependent, suggesting a mechanism for how H+ efflux by NHE1 promotes Cdc42 activity to generate a positive feedback signal necessary for polarity in migrating cells.
Expectations and demands regarding empathy (approach to the patient) and assurance were placed at the top of the patients' priorities. A highly significant quality gap was observed between the desires of the patients and their perceptions (P< 0.01) and the largest gap was noted concerning information they received about oral health diseases. The largest quality gap was also observed in characteristics regarding responsiveness.
BackgroundThe linkage between periodontal disease and rheumatoid arthritis is well established. Commonalities among the two are that both are chronic inflammatory diseases characterized by bone loss, an association with the shared epitope susceptibility allele, and anti-citrullinated protein antibodies.MethodsTo explore immune mechanisms that may connect the two seemingly disparate disorders, we measured host immune responses including T-cell phenotype and anti-citrullinated protein antibody production in human leukocyte antigen (HLA)-DR1 humanized C57BL/6 mice following exposure to the Gram-negative anaerobic periodontal disease pathogen Porphyromonas gingivalis. We measured autoimmune arthritis disease expression in mice exposed to P. gingivalis, and also in arthritis-resistant mice by flow cytometry and multiplex cytokine-linked and enzyme-linked immunosorbent assays. We also measured femoral bone density by microcomputed tomography and systemic cytokine production.ResultsExposure of the gingiva of DR1 mice to P. gingivalis results in a transient increase in the percentage of Th17 cells, both in peripheral blood and cervical lymph nodes, a burst of systemic cytokine activity, a loss in femoral bone density, and the generation of anti-citrullinated protein antibodies. Importantly, these antibodies are not produced in response to P. gingivalis treatment of wild-type C57BL/6 mice, and P. gingivalis exposure triggered expression of arthritis in arthritis-resistant mice.ConclusionsExposure of gingival tissues to P. gingivalis has systemic effects that can result in disease pathology in tissues that are spatially removed from the initial site of infection, providing evidence for systemic effects of this periodontal pathogen. The elicitation of anti-citrullinated protein antibodies in an HLA-DR1-restricted fashion by mice exposed to P. gingivalis provides support for the role of the shared epitope in both periodontal disease and rheumatoid arthritis. The ability of P. gingivalis to induce disease expression in arthritis-resistant mice provides support for the idea that periodontal infection may be able to trigger autoimmunity if other disease-eliciting factors are already present.
Reduction of the activation of NF-κB and AP-1 alone is not able to inhibit strongly the IL-1β stimulated IL-6 and IL-8 gene expression. 1,25D3 but not 20D3 may affect some of the many other factors/processes/pathways that in turn regulate the expression of these genes. However, the results suggest that topical application of ligands of the vitamin D receptor may be useful in the local treatment of periodontitis while reducing adverse systemic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.