The advent of geographic online social networks such as Foursquare, where users voluntarily signal their current location, opens the door to powerful studies on human movement. In particular the fine granularity of the location data, with GPS accuracy down to 10 meters, and the worldwide scale of Foursquare adoption are unprecedented. In this paper we study urban mobility patterns of people in several metropolitan cities around the globe by analyzing a large set of Foursquare users. Surprisingly, while there are variations in human movement in different cities, our analysis shows that those are predominantly due to different distributions of places across different urban environments. Moreover, a universal law for human mobility is identified, which isolates as a key component the rank-distance, factoring in the number of places between origin and destination, rather than pure physical distance, as considered in some previous works. Building on our findings, we also show how a rank-based movement model accurately captures real human movements in different cities.
Abstract-Mobile location-based services are thriving, providing an unprecedented opportunity to collect fine grained spatiotemporal data about the places users visit. This multi-dimensional source of data offers new possibilities to tackle established research problems on human mobility, but it also opens avenues for the development of novel mobile applications and services.In this work we study the problem of predicting the next venue a mobile user will visit, by exploring the predictive power offered by different facets of user behavior. We first analyze about 35 million check-ins made by about 1 million Foursquare users in over 5 million venues across the globe, spanning a period of five months. We then propose a set of features that aim to capture the factors that may drive users' movements. Our features exploit information on transitions between types of places, mobility flows between venues, and spatio-temporal characteristics of user check-in patterns. We further extend our study combining all individual features in two supervised learning models, based on linear regression and M5 model trees, resulting in a higher overall prediction accuracy. We find that the supervised methodology based on the combination of multiple features offers the highest levels of prediction accuracy: M5 model trees are able to rank in the top fifty venues one in two user check-ins, amongst thousands of candidate items in the prediction list.
Abstract-The popularity of location-based social networks available on mobile devices means that large, rich datasets that contain a mixture of behavioral (users visiting venues), social (links between users), and spatial (distances between venues) information are available for mobile location recommendation systems. However, these datasets greatly differ from those used in other online recommender systems, where users explicitly rate items: it remains unclear as to how they capture user preferences as well as how they can be leveraged for accurate recommendation.This paper seeks to bridge this gap with a three-fold contribution. First, we examine how venue discovery behavior characterizes the large check-in datasets from two different location-based social services, Foursquare and Gowalla: by using large-scale datasets containing both user check-ins and social ties, our analysis reveals that, across 11 cities, between 60% and 80% of users' visits are in venues that were not visited in the previous 30 days. We then show that, by making constraining assumptions about user mobility, state-of-the-art filtering algorithms, including latent space models, do not produce high quality recommendations. Finally, we propose a new model based on personalized random walks over a user-place graph that, by seamlessly combining social network and venue visit frequency data, obtains between 5 and 18% improvement over other models. Our results pave the way to a new approach for place recommendation in location-based social systems.
Online social systems are multiplex in nature as multiple links may exist between the same two users across different social media. In this work, we study the geo-social properties of multiplex links, spanning more than one social network and apply their structural and interaction features to the problem of link prediction across social networking services. Exploring the intersection of two popular online platformsTwitter and location-based social network Foursquare -we represent the two together as a composite multilayer online social network, where each platform represents a layer in the network. We find that pairs of users connected on both services, have greater neighbourhood similarity and are more similar in terms of their social and spatial properties on both platforms in comparison with pairs who are connected on just one of the social networks. Our evaluation, which aims to shed light on the implications of multiplexity for the link generation process, shows that we can successfully predict links across social networking services. In addition, we also show how combining information from multiple heterogeneous networks in a multilayer configuration can provide new insights into user interactions on online social networks, and can significantly improve link prediction systems with valuable applications to social bootstrapping and friend recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.