Background Coronary artery disease (CAD) remains one of the leading causes of mortality and morbidity worldwide. As oxygen and nutrient supply to the myocardium significantly decrease during ischemic periods, important changes occur regarding myocardial intermediary energy metabolism. Metabolomics is an emerging field in systems biology, which quantifies metabolic changes in response to disease progression. This study aims to evaluate the diagnostic utility of plasma metabolomics-based biomarkers for determining the complexity and severity of CAD, as it is assessed via the SYNTAX score. Methods Corlipid is a prospective, non-interventional cohort trial empowered to enroll 1065 patients with no previous coronary intervention history, who undergo coronary angiography in University Hospital AHEPA, Thessaloniki. Venous blood samples are collected before coronary angiography. State-of the-art analytical methods are performed to calculate the serum levels of novel biomarkers: ceramides, acyl-carnitines, fatty acids, and proteins such as galectin-3, adiponectin, and the ratio of apolipoprotein B/apolipoprotein A1. Furthermore, all patients will be categorized based on the indication for coronary angiography (acute coronary syndrome, chronic coronary syndrome, preoperative coronary angiography) and on the severity of CAD using the SYNTAX score. Follow-up of 12 months after enrollment will be performed to record the occurrence of major adverse cardiovascular events. A risk prediction algorithm will be developed by combining clinical characteristics with established and novel biomarkers to identify patients at high risk for complex CAD based on their metabolite signatures. The first patient was enrolled in July 2019 and completion of enrollment is expected until May 2021. Discussion CorLipid is an ongoing trial aiming to investigate the correlation between metabolic profile and complexity of coronary artery disease in a cohort of patients undergoing coronary angiography with the potential to suggest a decision-making tool with high discriminative power for patients with CAD. To our knowledge, Corlipid is the first study aspiring to create an integrative metabolomic biomarkers-based algorithm by combining metabolites from multiple classes, involved in a wide range of pathways with well-established biochemical markers. Trial registration CorLipid trial registration: ClinicalTrials.gov number: NCT04580173. Registered 8 October 2020—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04580173.
A staged superior PVs isolation approach confers equal success rates but with reduced radiofrequency energy delivery and fluoroscopy and procedure times compared to isolation of all PVs at the initial ablation attempt.
Dye-sensitized solar cells and dye-sensitized photoelectrochemical cells have attracted much interest in recent years for solar energy conversion. More effort is still required to increase the efficiency of these devices, which is closely linked to the crucial process of photoinduced charge separation. Computational studies can provide insights into this fundamental process and suggest molecular components and interfaces that feature optimal energy-level alignment before time-consuming trial-and-error experimental realization. Here, we use a combination of density functional based tight binding and an extended Huckel approach to perform quantum classical simulations of photoinduced electron injection in a TiO 2 dyesensitized photoanode with explicit solvation at a reasonable computational cost. In particular, we evaluate injection capabilities of core-extended naphthalene diimide (NDI) dyes with three different anchoring groups. Our results stress the importance of nuclear motion as well as conformational and trajectory sampling for a realistic description of the injection process. Furthermore, explicit solvation highly influences the conformational space explored by the dye and anchoring molecules, especially concerning the adsorption mode. Taking these effects into account, the core-extended NDI with a catechol-based anchoring moiety is shown to be the most promising ultrafast electron injector. Our strategy allows for a more systematic computational search for appropriate molecular chromophores in dye-sensitized devices for solar energy conversion.Article pubs.acs.org/JPCC
Sustained monomorphic VT is a rare complication of DSE, with no predictive value for the identification of patients with coronary artery disease and no prognostic significance in patients with normal coronary arteries. No predictors of its occurrence were identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.