Pancreatic adenocarcinoma is the most lethal of the solid tumors and the fourth leading cause of cancer-related death in North America. Most patients present with locally advanced or metastatic disease that precludes curative resection. These patients have an extremely poor prognosis. In the absence of effective screening methods, considerable efforts have been made during the past decade to identify better systemic treatments. Unfortunately most trials have not shown a survival advantage for most therapies. In tandem with this increased clinical research, there has also been an expansion of preclinical laboratory investigation. These preclinical studies revealed many of the molecular mechanisms involved in pancreatic cancer development, which has provided insights into why current therapies are ineffective. These new discoveries provide some optimism that new agents inhibiting specific targets will improve outcome and overcome the resistance of pancreatic cancer to most standard treatments. We review the current standards of care for patients with locally advanced and metastatic pancreatic carcinoma and outline some future directions for the development of new treatment strategies.
Bromodomain and extraterminal domain (BET) proteins are epigenetic readers that regulate gene expression and are involved in cancer pathogenesis. Over the last years, several BET inhibitors have been developed and clinically tested. Results from the first clinical trials show limited single-agent activity in a small subset of patients with hematologic malignancies and in NUT carcinoma. Adverse events have been observed and may limit treatment compliance. Here, we review the preclinical rationale for targeting BET proteins in cancer and the preliminary results from clinical trials, and outline future directions for the use of BET inhibitors as antitumor agents. BET inhibitors represent a new class of anticancer agents. Results from the first clinical trials confirm the antitumor potential of BET inhibitors, but their efficacy as single agents seems to be limited. Based on preclinical data, combination therapies with other anticancer agents and the development of a new generation of compounds may open new possibilities for targeting BET proteins as effective anticancer strategies.
The rarity of neoplastic cells in the biopsy imposes major technical hurdles that have so far limited genomic studies in classical Hodgkin lymphoma (cHL). By using a highly sensitive and robust deep next-generation sequencing approach for circulating tumor DNA (ctDNA), we aimed to identify the genetics of cHL in different clinical phases, as well as its modifications on treatment. The analysis was based on specimens collected from 80 newly diagnosed and 32 refractory patients with cHL, including longitudinal samples collected under ABVD (adriamycin, bleomycin, vinblastine, dacarbazine) chemotherapy and longitudinal samples from relapsing patients treated with chemotherapy and immunotherapy. ctDNA mirrored Hodgkin and Reed-Sternberg cell genetics, thus establishing ctDNA as an easily accessible source of tumor DNA for cHL genotyping. By identifying as the most frequently mutated gene in ∼40% of cases, we refined the current knowledge of cHL genetics. Longitudinal ctDNA profiling identified treatment-dependent patterns of clonal evolution in patients relapsing after chemotherapy and patients maintained in partial remission under immunotherapy. By measuring ctDNA changes during therapy, we propose ctDNA as a radiation-free tool to track residual disease that may integrate positron emission tomography imaging for the early identification of chemorefractory patients with cHL. Collectively, our results provide the proof of concept that ctDNA may serve as a novel precision medicine biomarker in cHL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.