Changes mediated by oxidative stress are thought to be involved with atherosclerosis in patients with chronic kidney disease (CKD). The purpose of this study was to analyze the markers of oxidative damage and the activity of antioxidative enzymes as well as the total antioxidant capability in patients with different stages of CKD, both conventionally treated and dialyzed. We evaluated the oxidative modification of lipids (by oxidized low-density lipoprotein and malonodialdehyde levels) and proteins (by advanced oxidation protein products level). We also assessed the activity of paraoxonase-1 and glutathione peroxidases and total antioxidant status. Compared with the control group, the uremic patients, both dialyzed and nondialyzed, had higher levels of all studied plasma oxidative stress markers and decreased activity of antioxidative enzymes. Our results lead us to conclude that oxidative stress seems to be related rather to the uremic state than to the dialysis treatment. We also showed that estimating total antioxidant status in a simple test is unreliable for assessing the antioxidant ability of patients with CKD.
The standardization of urine particle counting methods continues to be a significant problem in medical laboratories and requires further recovery activities which can be conducted using the EQA scheme.
Intraperitoneal administration of maleate produced an increase in blood alpha-ketoacid, acetoacetate, and free fatty acids. The effect of this treatment on blood glucose levels depended on whether the rats were fed or fasted. In fed rats it was accompanied by slight, transient hyperglycemia connected with depletion of liver glycogen stores. In fasted animals moderate hypoglycemia was observed. The in vivo conversion of various precursors into blood glucose was not inhibited, suggesting that maleate does not affect hepatic gluconeogenesis. Neither was a direct effect on liver glycogenolysis observed. On the other hand, maleate inhibited renal gluconeogenesis from various substrates and stimulated anerobic glycolysis in kidney cortical alices. The data are interpreted in terms of increased utilization and decreased production of glucose by the kidney followed by secondary changes in liver carbohydrate metabolism.
One of the subfractions of HDL involved in reverse cholesterol transport is γ-LpE. It has been assumed that, like preβ-LpAI, it can be generated during the interaction between phosphatidylcholine liposomes and lipoproteins and can contribute to more efficient cholesterol efflux after the introduction of liposomes to plasma. However, there has been no evidence concerning what the sources of these particles in plasma might be. Here, we determined whether the interaction of phosphatidylcholine liposomes with VLDL and the subsequent conversions of particles could be a source of new γ-LpE particles. We found that the interaction between liposomes and VLDL affected its lipid and protein composition. The content of phospholipids increased (~96 %) while the content of free cholesterol and apolipoprotein E decreased in VLDL during the reaction with liposomes (~100 and ~24 %, respectively). New particles which did not contain apolipoprotein B were generated. Heterogeneous HDL-sized populations of particles were generated, containing phospholipids and apolipoprotein E as the sole apolipoprotein, with densities from 1.063 to 1.21 g/ml, either with γ-mobility on agarose gel and Stokes diameters from 8.58 to 22.07 nm or with preβ-mobility and Stokes diameters from 9.9 to 21.08 nm. The obtained results contribute to the understanding of changes in lipoproteins under the influence of phosphatidylcholine liposomes, showing the formation of new (γ-LpE)-like and (preβ-LpE)-like particles, similar in mobility and size to plasma HDL-LpE. These newly generated particles can claim a share of the antiatherogenic effects of liposomes, observed in studies both in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.