Background Prostate cancer is one of the most common and socially significant cancers among men. The aim of our study was to reveal changes in miRNA expression profiles associated with lymphatic dissemination in prostate cancer and to identify the most prominent miRNAs as potential prognostic markers for future studies. Methods High-throughput miRNA sequencing was performed for 44 prostate cancer specimens taken from Russian patients, with and without lymphatic dissemination (N1 – 20 samples; N0 – 24 samples). Results We found at least 18 microRNAs with differential expression between N0 and N1 sample groups: miR-182-5p, miR-183-5p, miR-96-5p, miR-25-3p, miR-93-5p, miR-7-5p, miR-615-3p, miR-10b, miR-1248 (N1-miRs; elevated expression in N1 cohort; p < 0.05); miR-1271-5p, miR-184, miR-222-3p, miR-221-5p, miR-221-3p, miR-455-3p, miR-143-5p, miR-181c-3p and miR-455-5p (N0-miRs; elevated expression in N0; p < 0.05). The expression levels of N1-miRs were highly correlated between each other (the same is applied for N0-miRs) and the expression levels of N0-miRs and N1-miRs were anti-correlated. The tumor samples can be divided into two groups depending on the expression ratio between N0-miRs and N1-miRs. Conclusions We found the miRNA expression signature associated with lymphatic dissemination, in particular on the Russian patient cohort. Many of these miRNAs are well-known players in either oncogenic transformation or tumor suppression. Further experimental studies with extended sampling are required to validate these results.
Older age is one of the main risk factors for cancer development. The incidence of prostate cancer, as a multifactorial disease, also depends upon demographic factors, race, and genetic predisposition. Prostate cancer most frequently occurs in men over 60 years of age, indicating a clear association between older age and disease onset. Carcinogenesis is followed by the deregulation of many genes, and some of these changes could serve as biomarkers for diagnosis, prognosis, prediction of drug therapy efficacy, as well as possible therapeutic targets. We have performed a bioinformatic analysis of a The Cancer Genome Atlas (TCGA) data and RNA-Seq profiling of a Russian patient cohort to reveal prognostic markers of locally advanced lymph node-negative prostate cancer (lymph node-negative LAPC). We also aimed to identify markers of the most common molecular subtype of prostate cancer carrying a fusion transcript TMPRSS2-ERG . We have found several genes that were differently expressed between the favorable and unfavorable prognosis groups and involved in the enriched KEGG pathways based on the TCGA ( B4GALNT4 , PTK6 , and CHAT ) and Russian patient cohort data ( AKR1C1 and AKR1C3 ). Additionally, we revealed such genes for the TMPRSS2-ERG prostate cancer molecular subtype ( B4GALNT4 , ASRGL1 , MYBPC1 , RGS11 , SLC6A14 , GALNT13 , and ST6GALNAC1 ). Obtained results contribute to a better understanding of the molecular mechanisms behind prostate cancer progression and could be used for further development of the LAPC prognosis marker panel.
Obesity is a high-risk factor for such comorbidities as cardiovascular disease, several types of cancer, and type 2 diabetes; however not all individuals with obesity have such complications. Approximately 20% of individuals with obesity are metabolically healthy. This study focused on differences between obese individuals with and without type 2 diabetes (T2D+ and T2D–, respectively) on the transcriptome level. Subjects included were 35 T2D– patients with obesity and 35 T2D+ patients with obesity with the same body mass index (BMI). The study was based on the transcription analysis of mRNA and microRNAs (miRs) by RNAseq. In the first step, we performed RNAseq of miRs, in the second step, we analyzed only those mRNA, which appeared targets for significant miRs from the first step. All RNAseq results were validated by qPCR. There were seven miRs differently expressed with adjusted p-value <0.1, which were confirmed by qPCR. Five among them: miR-204-5p, miR125b-5p, miR-125a-5p, miR320a, miR-99b—were upregulated in T2D+ patients with obesity, while only two miRs, miR-23b-3p, and miR197-3p, were increased in T2D– patients with obesity. These seven miRs target two groups of genes: matrix metalloproteinases and TGFβ signal pathway genes. According to the results of transcriptome analysis, the main difference between T2D+ and T2D– patients with obesity was in adipogenesis and fibrosis regulation by matrix metalloproteinases and SMAD4-RUNX2 signal cascade. Based on the data about transcription profiles of both groups, we suggested that the process of fibrosis in T2D+ patients with obesity is more pronounced than in T2D– patients with obesity.
Prostate cancer (PC) is one of the most common cancers among men worldwide, and advanced PCs, such as locally advanced PC (LAPC) and castration-resistant PC (CRPC), present the greatest challenges in clinical management. Current indicators have limited capacity to predict the disease course; therefore, better prognostic markers are greatly needed. In this study, we performed a bioinformatic analysis of The Cancer Genome Atlas (TCGA) datasets, including RNA-Seq data from the prostate adenocarcinoma (PRAD; n = 55) and West Coast Dream Team – metastatic CRPC (WCDT-MCRPC; n = 84) projects, to evaluate the transcriptome changes associated with progression-free survival (PFS) for LAPC and CRPC, respectively. We identified the genes whose expression was positively/negatively correlated with PFS. In LAPC, the genes with the most significant negative correlations were ZC2HC1A, SQLE, and KIF11, and the genes with the most significant positive correlations were SOD3, LRRC26, MIR22HG, MEG3, and MIR29B2CHG. In CRPC, the most significant positive correlations were found for BET1, CTAGE5, IFNGR1, and GIMAP6, and the most significant negative correlations were found for CLPB, PRPF19, ZNF610, MPST, and LINC02001. In addition, we performed a gene network interaction analysis using STRINGdb, which revealed a significant relationship between genes predominantly involved in the cell cycle and characterized by upregulated expression in early recurrence. Based on the results, we propose several genes that can be used as potential prognostic markers.
Background CpG island methylator phenotype (CIMP) is found in 15–20% of malignant colorectal tumors and is characterized by strong CpG hypermethylation over the genome. The molecular mechanisms of this phenomenon are not still fully understood. The development of CIMP is followed by global gene expression alterations and metabolic changes. In particular, CIMP-low colon adenocarcinoma (COAD), predominantly corresponded to consensus molecular subtype 3 (CMS3, “Metabolic”) subgroup according to COAD molecular classification, is associated with elevated expression of genes participating in metabolic pathways. Methods We performed bioinformatics analysis of RNA-Seq data from The Cancer Genome Atlas (TCGA) project for CIMP-high and non-CIMP COAD samples with DESeq2, clusterProfiler, and topGO R packages. Obtained results were validated on a set of fourteen COAD samples with matched morphologically normal tissues using quantitative PCR (qPCR). Results Upregulation of multiple genes involved in glycolysis and related processes ( ENO2, PFKP, HK3, PKM, ENO1, HK2, PGAM1, GAPDH, ALDOA, GPI, TPI1, and HK1 ) was revealed in CIMP-high tumors compared to non-CIMP ones. Most remarkably, the expression of the PKLR gene, encoding for pyruvate kinase participating in gluconeogenesis, was decreased approximately 20-fold. Up to 8-fold decrease in the expression of OGDHL gene involved in tricarboxylic acid (TCA) cycle was observed in CIMP-high tumors. Using qPCR, we confirmed the increase (4-fold) in the ENO2 expression and decrease (2-fold) in the OGDHL mRNA level on a set of COAD samples. Conclusions We demonstrated the association between CIMP-high status and the energy metabolism changes at the transcriptomic level in colorectal adenocarcinoma against the background of immune pathway activation. Differential methylation of at least nine CpG sites in OGDHL promoter region as well as decreased OGDHL mRNA level can potentially serve as an additional biomarker of the CIMP-high status in COAD. Electronic supplementary material The online version of this article (10.1186/s12881-019-0771-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.