The article discusses the problem of detecting network attacks on a web server. The attention is focused on two common types of attacks: “denial of service” and “code injection”. A review and an analysis of various attack detection techniques are conducted. A new lightweight approach to detect attacks as anomalies is proposed. It is based on recognition of the dynamic response of the web server during requests processing. An autoencoder is implemented for dynamic response anomaly recognition. A case study with the MyBB web server is described. Several flood attacks and SQL injection attack are modeled and successfully detected by the proposed method. The efficiency of the detection algorithm is evaluated, and the advantages and disadvantages of the proposed approach are analyzed.
The actual problem of adversarial attacks on classifiers, mainly implemented using deep neural networks, is considered. This problem is analyzed with a generalization to the case of any classifiers synthesized by machine learning methods. The imperfection of generally accepted criteria for assessing the quality of classifiers, including those used to confirm the effectiveness of protection measures against adversarial attacks, is noted. The reason for the appearance of adversarial examples and other errors of classifiers based on machine learning is investigated. A method for modeling adversarial attacks with a demonstration of the main effects observed during the attack is proposed. It is noted that it is necessary to develop quality criteria for classifiers in terms of potential susceptibility to adversarial attacks. To assess resistance to adversarial attacks, it is proposed to use the multidimensional EDCAP criterion (Excess, Deficit, Coating, Approx, Pref). We also propose a method for synthesizing a new EnAE (Ensemble of Auto-Encoders) multiclass classifier based on an ensemble of quality-controlled one-class classifiers according to EDCAP criteria. The EnAE classification algorithm implements a hard voting approach and can detect anomalous inputs. The proposed criterion, synthesis method and classifier are tested on several data sets with a medium dimension of the feature space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.