Visualization of soft tissues in microCT scanning using X-rays is still a complicated matter. There is no simple tool or methodology on how to set up an optimal look-up-table while respecting the type of soft tissue. A partial solution may be the use of a contrast agent. However, this must be accompanied by an appropriate look-up-table setting that respects the relationship between the soft tissue type and the Hounsfield units. The main aim of the study is to determine experimentally derived look-up-tables and relevant values of the Hounsfield units based on the statistical correlation analysis. These values were obtained from the liver and kidneys of 24 mice in solutions of ethanol as the centroid value of the opacity look-up-table area under this graph. Samples and phantom were scanned by a Bruker SkyScan 1275 micro-CT and Phywe XR 4.0 and processed using CTvox and ORS Dragonfly software. To reconstruct the micro-CT projections, NRecon software was used. The main finding of the study is that there is a statistically significant relationship between the centroid of the area under the look-up-table curve and the number of days for which the animal sample was stored in an ethanol solution. H1 of the first hypothesis, i.e. that suggested the Spearman’s correlation coefficient does not equal zero (r1 ≠ 0) regarding this relationship was confirmed. On the other hand, there is no statistically significant relationship between the centroid of the area under the look-up-table curve and the concentration of the ethanol solution. In this case, H1 of the second hypothesis, i.e. that the Spearman’s correlation coefficient does not equal zero (r2 ≠ 0) regarding this relationship was not confirmed. Spearman’s correlation coefficients were −0.27 for the concentration and −0.87 for the number of days stored in ethanol solution in the case of the livers of 13 mice and 0.06 for the concentration and 0.94 for the number of days stored in ethanol solution in the case of kidneys of 11 mice.
The volume reduction of the gray matter structures in patients with Alzheimer’s disease is often accompanied by an asymmetric increase in the number of white matter fibers located close to these structures. The present study aims to investigate the white matter structure changes in the motor basal ganglia in Alzheimer’s disease patients compared to healthy controls using diffusion tensor imaging. The amounts of tracts, tract length, tract volume, quantitative anisotropy, and general fractional anisotropy were measured in ten patients with Alzheimer’s disease and ten healthy controls. A significant decrease in the number of tracts and general fractional anisotropy was found in patients with Alzheimer’s disease compared to controls in the right caudate nucleus, while an increase was found in the left and the right putamen. Further, a significant decrease in the structural volume of the left and the right putamen was observed. An increase in the white matter diffusion tensor imaging parameters in patients with Alzheimer’s disease was observed only in the putamen bilaterally. The right caudate showed a decrease in both the diffusion tensor imaging parameters and the volume in Alzheimer’s disease patients. The right pallidum showed an increase in the diffusion tensor imaging parameters but a decrease in volume in Alzheimer’s disease patients.
Cortical folding of the anterior cingulate cortex (ACC), particularly the cingulate (CS) and the paracingulate (PCS) sulci, represents a neurodevelopmental marker. Deviations in in utero development in schizophrenia can be traced using CS and PCS morphometry. In the present study, we measured the length of CS, PCS, and their segments on T1 MRI scans in 93 patients with first- episode schizophrenia and 42 healthy controls. Besides the length, the frequency and the left-right asymmetry of CS/PCS were compared in patients and controls. Distribution of the CS and PCS morphotypes in patients was different from controls. Parcellated sulcal pattern CS3a in the left hemisphere was longer in patients (53.8 ± 25.7 mm vs. 32.7 ± 19.4 mm in controls, p < 0.05), while in CS3c it was reversed—longer in controls (52.5 ± 22.5 mm as opposed to 36.2 ± 12.9 mm, n.s. in patients). Non parcellated PCS in the right hemisphere were longer in patients compared to controls (19.4 ± 10.2 mm vs. 12.1 ± 12.4 mm, p < 0.001). Therefore, concurrent presence of PCS1 and CS1 in the left hemisphere and to some extent in the right hemisphere may be suggestive of a higher probability of schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.