Many neuro-degenerative diseases are difficult to diagnose in their early stages. For example, early diagnosis of Mild Cognitive Impairment (MCI) requires a wide variety of tests to distinguish MCI symptoms and normal consequences of aging. In this article, we use the wavelet–skeleton approach to find some characteristic patterns in the electroencephalograms (EEGs) of healthy adult patients and patients with cognitive dysfunctions. We analyze the EEG activity recorded during natural sleep of 11 elderly patients aged between 60 and 75, six of whom have mild cognitive impairment, and apply a nonlinear analysis method based on continuous wavelet transformskeletons. Our studies show that a comprehensive analysis of EEG signals of the entire sleep state allows us to identify a significant decrease in the average duration of oscillatory patterns in the frequency band [12; 14] Hz in the presence of mild cognitive impairment. Thus, the changes in this frequency range can be interpreted as related to the activity in the motor cortex, as a candidate for developing the criteria for early objective MCI.
Виконано аналіз методів класифікації machine learning та визначені етапи обробки складних даних на основі бінарної класифікації. Розроблено модель аналізу складних даних на основі класифікації machine learning та проведено перевірку її адекватності з використанням різних засобів оцінки. Виконана класифікація даних на відповідність двом класам: корисної інформації та спаму. Іл.: 2. Бібліогр.: 11 назв. Ключові слова: класифікація; складні дані; machine learning; засоби оцінки; бінарна класифікація; спам.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.