Different geometry patterns of the surface of thrust bearings have been proven very beneficial in terms of bearing loadcarrying capacity and friction coefficient. In this study, four different types of sector-pad thrust bearings have been crossevaluated for operation under realistic operating conditions: (a) an open pocket bearing, (b) a closed pocket bearing, (c) a tapered-land bearing, and (d) a bearing partially textured with rectangular dimples. Bearing performance has been computed by means of computational fluid dynamics simulations based on the numerical solution of the NavierStokes and energy equations for incompressible flow. Conjugate heat transfer at the bearing pad and rotor has been taken into account. Initially, for a reference design of each bearing, the effects of varying rotational speed and minimum film thickness have been investigated. Further, characterization of each bearing for a constant level of thrust load has been performed. Finally, the effects of varying the depth of each geometry pattern have been studied. The present results illustrate a superior performance of the open pocket bearing in comparison to the other bearing types.
-In this paper, a computational investigation of thermohydrodynamic performance and mechanical deformations of a fixed-geometry thrust bearing with artificial surface texturing is presented. A parallel eight-pad bearing is considered; the surface of each pad is partially textured with square dimples. Here, a CFD-based thermohydrodynamic modeling approach, recently introduced by the authors, is used to calculate the performance of the bearing; the THD results are then used to quantify the deformations of the bearing mechanical parts. The bearing is modelled as a sector-shaped channel, consisting of a smooth rotating wall (thrust collar) and a partially textured stationary wall (bearing pad). The bearing performance characteristics are computed by means of numerical simulations, based on the numerical solution of the Navier-Stokes and energy equations for incompressible flow, as well as on the solution of the elasticity equations for the bearing solid parts. Here, a reference texture geometry is considered, while proper thermal and structural boundary conditions are implemented. For representative film thickness values, the effect of rotational speed and collar thickness on bearing performance is quantified, and the resulting pad and rotor deformation fields are computed. It is found that, due to oil heating, the load carrying capacity decreases with rotational speed for values higher that approximately 2000 rpm. The computed rotor deformation field is representative of a fixed support beam, characterized by substantially higher levels than those of the bearing pad. Rotor deformations increase substantially at low values of collar thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.