Transport of continental shelf sediments to the deep ocean can be studied from displaced symbiont-bearing larger benthic foraminifera found in turbidity current deposits. The larger benthic foraminifera habitat depth, physical characteristics and preservation serve as indicators for understanding sediment transport dynamics near the seabed and in the water column. Here, an experiment was designed to explore sediment transport in a closed flume system using simulated high current velocities. Shelf sediments from the Gulf of Eilat/Aqaba, dominated by Amphistegina papillosa and Operculina ammonoides, were subjected to 60 cm s −1 and 80 cm s −1 current velocities while collected in a 10 cm vertical sediment trap. Larger benthic foraminifera abundance, shell physical properties and preservation were analyzed and compared with the original bulk sediments. The experiment results showed that at 80 cm s −1 velocity, larger benthic foraminifera shells of all sizes and preservations are efficiently resuspended and transported in large quantities throughout the water column, as opposed to their transport as bedload by the lower velocity current. Larger benthic foraminifera shape also has a role in the transport distances and accumulation depths. Operculina ammonoides shells were found to be more portable, compared to Amphistegina papillosa, due to their flatter discoid shape. The results suggest that a threshold velocity of ca 80 cm s −1 was needed to generate the thick coarse deposits found in the Gulf of Eilat/Aqaba slope sedimentary record, which were previously suggested to be triggered by large magnitude seismic events. Lower velocities probably winnowed minor amounts of larger benthic foraminifera shells (with little or no coarser sediments) that were deposited as a thin sand layer may point to lower magnitude seismic triggers. In conclusion, larger benthic foraminifera shells are transported and deposited in accordance with their hydrodynamic properties, resulting in assemblage differentiation along the transport 1231
<p>Submarine mass transport deposits (MTDs) and turbidites are a well-known phenomenon in tectonically active regions. Evidence for such deposits is commonly found in the continental slope sedimentary records as distinct units with coarser grain size compared to the continuous pelagic sedimentation. The Gulf of Eilat/Aqaba is located between the southernmost end of the Dead Sea transform and the spreading center of the Red Sea, and is considered as an active tectonic region. In this study, symbiont-bearing Larger Benthic Foraminifera (LBF) were used to identify MTDs in the Gulf of Eilat/Aqaba (GEA) sedimentary record. The abundance, size and preservation state of LBF shells were analyzed in two radiocarbon dated sediment cores collected at different deposition environments at the deep GEA slope.</p><p>The microfaunal and taphonomic results show that the coarse units are characterized by a generally higher numerical abundance of LBF, dominated by <em>Operculina ammonoides,</em> <em>Amphistegina papillosa</em> and <em>Amphistegina bicirculata</em>. These benthic assemblages are found in deeper depths than their original habitat at the continental shelf. In the coarse units, LBF> 1 mm appear in higher frequency and poorly preserved shells are also abundant. In addition, these units contain high numbers of yellowish and blackish colored LBF shells, as opposed to null in the non-disturbed units, and unlike their natural pristine white color. The large shell size indicates that high energy is involved in the displacement of the &#160;sediments. The poor state of preservation also suggests a turbulent flow during transportation, which requires a high-energy triggering mechanism. The color alteration is probably associated with a diagenetic process related to increasing burial time/depth, also supported by the stratigraphic older ages of the MTDs, suggesting a long burial before the sediments were displaced. Radiocarbon dating reveled most of the MTDs correlate with historical and pre-historical earthquakes, reinforcing LBF species as a reliable proxy for mass transport events.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.