Chemiluminescent luminophores are considered as one of the most sensitive families of probes for detection and imaging applications. Due to their high signal-to-noise ratios, luminophores with near-infrared (NIR) emission are particularly important for in vivo use. In addition, light with such long wavelength has significantly greater capability for penetration through organic tissue. So far, only a few reports have described the use of chemiluminescence systems for in vivo imaging. Such systems are always based on an energy-transfer process from a chemiluminescent precursor to a nearby emissive fluorescent dye. Here, we describe the development of the first chemiluminescent luminophores with a direct mode of NIR light emission that are suitable for use under physiological conditions. Our strategy is based on incorporation of a substituent with an extended π-electron system on the excited species obtained during the chemiexcitation pathway of Schaap's adamantylidene-dioxetane probe. In this manner, we designed and synthesized two new luminophores with direct light emission wavelength in the NIR region. Masking of the luminophores with analyte-responsive groups has resulted in turn-ON probes for detection and imaging of β-galactosidase and hydrogen peroxide. The probes' ability to image their corresponding analyte/enzyme was effectively demonstrated in vitro for β-galactosidase activity and in vivo in a mouse model of inflammation. We anticipate that our strategy for obtaining NIR luminophores will open new doors for further exploration of complex biomolecular systems using non-invasive intravital chemiluminescence imaging techniques.
Amphiphilic tobramycin analogues with potent antibacterial activity against tobramycin‐resistant bacteria were synthesized. Most analogues were found to be less prone to deactivation by aminoglycoside‐modifying enzymes than tobramycin. These compounds target the bacterial membrane rather than the ribosome (see picture). The lipophilic residue of these analogues is key to their antibacterial potency and selectivity towards bacterial membranes.
Many drugs show promising results in laboratory research but eventually fail clinical trials. We hypothesize that one main reason for this translational gap is that current cancer models are inadequate. Most models lack the tumor-stroma interactions, which are essential for proper representation of cancer complexed biology. Therefore, we recapitulated the tumor heterogenic microenvironment by creating fibrin glioblastoma bioink consisting of patient-derived glioblastoma cells, astrocytes, and microglia. In addition, perfusable blood vessels were created using a sacrificial bioink coated with brain pericytes and endothelial cells. We observed similar growth curves, drug response, and genetic signature of glioblastoma cells grown in our 3D-bioink platform and in orthotopic cancer mouse models as opposed to 2D culture on rigid plastic plates. Our 3D-bioprinted model could be the basis for potentially replacing cell cultures and animal models as a powerful platform for rapid, reproducible, and robust target discovery; personalized therapy screening; and drug development.
Angiogenesis plays a prominent role in cancer progression. Anti-angiogenic therapy therefore, either alone or in combination with conventional cytotoxic therapy, offers a promising therapeutic approach. Paclitaxel (PTX) is a widely-used potent cytotoxic drug that also exhibits anti-angiogenic effects at low doses. However, its use, at its full potential, is limited by severe side effects. Here we designed and synthesized a targeted conjugate of PTX, a polymer and an integrin-targeted moiety resulting in a polyglutamic acid (PGA)-PTX-E-[c(RGDfK)2] nano-scaled conjugate. Polymer conjugation converted PTX to a macromolecule, which passively targets the tumor tissue exploiting the enhanced permeability and retention effect, while extravasating via the leaky tumor neovasculature. The cyclic RGD peptidomimetic enhanced the effects previously seen for PGA-PTX alone, utilizing the additional active targeting to the αvβ3 integrin overexpressed on tumor endothelial and epithelial cells. This strategy is particularly valuable when tumors are well-vascularized, but they present poor vascular permeability. We show that PGA is enzymatically-degradable leading to PTX release under lysosomal acidic pH. PGA-PTX-E-[c(RGDfK)2] inhibited the growth of proliferating αvβ3-expressing endothelial cells and several cancer cells. We also showed that PGA-PTX-E-[c(RGDfK)2] blocked endothelial cells migration towards vascular endothelial growth factor; blocked capillary-like tube formation; and inhibited endothelial cells attachment to fibrinogen. Orthotopic studies in mice demonstrated preferential tumor accumulation of the RGD-bearing conjugate, leading to enhanced antitumor efficacy and a marked decrease in toxicity as compared with free PTX-treated mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.