Light has been proposed to stimulate the translation of Chlamydomonas reinhardtii chloroplast psbA mRNA by activating a protein complex associated with the 5 untranslated region of this mRNA. The protein complex contains a redox-active regulatory site responsive to thioredoxin. We identified RB60, a protein disulfide isomeraselike member of the protein complex, as carrying the redox-active regulatory site composed of vicinal dithiol. We assayed in parallel the redox state of RB60 and translation of psbA mRNA in intact chloroplasts. Light activated the specific oxidation of RB60, on the one hand, and reduced RB60, probably via the ferredoxin-thioredoxin system, on the other. Higher light intensities increased the pool of reduced RB60 and the rate of psbA mRNA translation, suggesting that a counterbalanced action of reducing and oxidizing activities modulates the translation of psbA mRNA in parallel with fluctuating light intensities. In the dark, chemical reduction of the vicinal dithiol site did not activate translation. These results suggest a mechanism by which light primes redox-regulated translation by an unknown mechanism and then the rate of translation is determined by the reduction-oxidation of a sensor protein located in a complex bound to the 5 untranslated region of the chloroplast mRNA.
Cholera toxin (CT) consists of a pentameric B subunit which binds with high affinity to ganglioside GM1, and an A subunit which stimulates adenylate cyclase, resulting in the elevation of cAMP. We now examine the effect of cationic amphiphilic drugs (CADs) on the internalization of rhodamine (Rh)-CT in cultured hippocampal neurons. CADs have recently been shown to inhibit receptor recycling by disrupting the assembly-disassembly of clathrin at the plasma membrane and on endosomes (Wang, L.-H., Rothberg, K. G., and Anderson, R. G. W. (1993) J. Cell Biol. 123, 1107-1117). Rh-CT was internalized by an energy- and temperature-dependent (presumably vesicular) mechanism to the Golgi apparatus. Internalization to the Golgi apparatus was completely but reversibly blocked by CADs, and the ability of CT to stimulate the elevation of cAMP was significantly reduced. In control cells, cAMP levels were elevated 2.3-fold after 20 min of incubation with CT, but in CAD-treated cells cAMP levels were only elevated 1.3-fold. The effect of CADs on CT internalization was not due to a direct effect of CADs on the Golgi apparatus. Our data demonstrate that CADs inhibit vesicular transport of CT to the Golgi apparatus and imply that the sorting of CT to the Golgi apparatus occurs in the same endosomal compartment involved in sorting recycling receptors to the plasma membrane, since both pathways are inhibited by CADs.
Various glycolipid-binding toxins are internalized from the cell surface to the Golgi apparatus. Prominent among these is cholera toxin (CT), which consists of a pentameric B subunit that binds to ganglioside GM1 and an A subunit that mediates toxicity. We now demonstrate that rhodamine (Rh)-CT can be further internalized from the Golgi apparatus to the endoplasmic reticulum (ER) in cultured hippocampal neurons and in neuroblastoma N18TG-2 cells and that the A subunit is essential for retrograde transport to the ER. In addition, the rate of internalization of Rh-CT to the Golgi apparatus and ER decreases dramatically as hippocampal neurons mature. The Golgi apparatus was labeled in almost all 1-day-old neurons after <1 h of incubation with Rh-CT but was labeled in <10% of 14-day-old neurons after 1 h. During the first 14 days in culture, there was a 15-fold increase in the number of 125l-CT-binding sites per cell, indicating that the decrease in the rate of internalization of Rh-CT is not due to reduced levels of cell surface GM1 in older neurons. These results imply that the rate of retrograde transport of CT from the plasma membrane to the Golgi apparatus and ER is regulated during neuronal development and differentiation.
In order to study the endocytosis of membrane lipids during the development of neuronal polarity, we examined the internalization of a short acyl chain fluorescent derivative of ganglioside GM1, N-(6-(4-nitrobenz-2-oxa-1,3-diazole-7-yl)-aminohexanoyl)-GM1 (C6-NBD-GM1), in hippocampal neurons cultured at low density. C6-NBD-GM1 was internalized by temperature- and energy-dependent mechanisms, and after short times of incubation, accumulated in endosomes in the axon, cell body and dendrites of neurons maintained for up to 4–5 days in culture. C6-NBD-GM1 was subsequently transported in a retrograde direction to a pool of recycling endosomes in the cell body, with little transport to lysosomes, as indicated by the lack of degradation of C6-NBD-GM1 even after long times, and the re-appearance of intact C6-NBD-GM1 at the cell surface after recycling; similarly, little degradation of C6-NBD-GM1 was detected in N18TG-2 neuroblastoma cells. In hippocampal neurons maintained for longer than 6 days in culture, there was little internalization of C6-NBD-GM1 along the length of axons, but the amount of endocytosis from dendrites was similar to that observed in younger neurons. These results demonstrate that gangliosides turnover rapidly in dendritic membranes at all stages of neuronal development, whereas ganglioside turnover in axons is much less rapid, at least in mature, polarized neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.