The major skeletal elements in the (Porifera) sponges, are spicules formed from inorganic material. The spicules in the Demospongiae class are composed of hydrated, amorphous silica. Recently an enzyme, silicatein, which polymerizes alkoxide substrates to silica was described from the sponge Tethya aurantia. In the present study the cDNA encoding silicatein was isolated from the sponge Suberites domuncula. The deduced polypeptide comprises 331 amino acids and has a calculated size of M r 36 306. This cDNA was used as a probe to study the potential role of silicate on the expression of the silicatein gene. For these studies, primmorphs, a special form of aggregates composed of proliferating cells, have been used. It was found that after increasing the concentration of soluble silicate in the seawater medium from around 1 mm to approximately 60 mm, this gene is strongly upregulated. Without additional silicate only a very weak expression could be measured. Because silica as well as collagen are required for the formation of spicules, the expression of the gene encoding collagen was measured in parallel. It was also found that the level of transcripts for collagen strongly increases in the presence of 60 mm soluble silicate. In addition, it is demonstrated that the expression of collagen is also upregulated in those primmorphs which were treated with recombinant myotrophin obtained from the same sponge. Myotrophin, however, had no effect on the expression of silicatein. From these data we conclude that silicate influences the expression of the enzyme silicatein and also the expression of collagen, (via the mediator myotrophin).
Sponges (phylum Porifera) are the phylogenetically oldest metazoa; as filter feeders, they are abundantly exposed to marine microorganisms. Here we present data indicating that the demosponge Suberites domuncula is provided with a recognition system for Gramnegative bacteria. The lipopolysaccharide (LPS)-interacting protein was identified as a receptor on the sponge cell surface, which recognizes the bacterial endotoxin LPS. The cDNA was isolated, and the protein (M r 49,937) was expressed. During binding to LPS, the protein dimerizes and interacts with MyD88, which was also identified and cloned. The sponge MyD88 (M r 28,441) is composed of two protein interaction domains, a Toll/interleukin-1 receptor domain (found in MyD88 and in Toll-like receptors) and a death domain (present in MyD88 and interleukin-1 receptor-associated kinase). Northern blot experiments and in situ hybridization studies showed that after LPS treatment, the level of the LPS-interacting protein remains unchanged, whereas MyD88 is strongly up-regulated. A perforin-like molecule (M r 74,171), the macrophage-expressed protein, was identified as an executing molecule of this pathway. This gene is highly expressed after LPS treatment, especially at the surfaces of the animals. The recombinant protein possesses biological activity and eliminates Gram-negative bacteria; it is inactive against Gram-positive bacteria. These data indicate that S. domuncula is provided with an innate immune system against Gramnegative bacteria; the ligand LPS (a pathogen-associated molecular pattern) is recognized by the pattern recognition receptor (LPS-interacting protein), which interacts with MyD88. A signal transduction is established, which results in an elevated expression of MyD88 as well as of the macrophage-expressed protein as an executing protein.
Sponges (phylum Porifera) represent the evolutionarily oldest metazoans that comprise already a complex immune system and are related to the crown taxa of the protostomians and the deuterostomians. Here, we demonstrate the existence of a tachylectin-related protein in the demosponge Suberites domuncula, termed Suberites lectin. The MAPK pathway was activated in response to lipopolysaccharide treatment of the three-dimensional cell aggregates, the primmorphs; this process was abolished by the monosaccharide D-GlcNAc. The cDNA encoding the S. domuncula lectin was identified and cloned; it comprises 238 amino acids (26 kDa) in the open reading frame. The deduced protein has one potential transmembrane region, three characteristic Cys residues, and six internal tandem repeats; it shares the highest sequence similarity with lectins from the horseshoe crab Tachypleus trunculus. The steady-state level of expression of the Suberites lectin rises in primmorphs in response to lipopolysaccharide, an effect that was prevented by co-incubation with D-GlcNAc. The natural sponge lectin was purified by affinity chromatography; it has a size of 27 kDa and displays antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus. The putative protein, deduced from the cloned gene, is identical/similar to the purified natural protein, as demonstrated by immunological cross-reactivity with specific antibodies. We conclude that the S. domuncula lectin acts as an antibacterial molecule involved in immune defense against bacterial invaders.
There is a demand for novel bioactive supports in surgery, orthopedics, and tissue engineering. The availability of recombinant silica-synthesizing enzyme (silicatein) opens new possibilities for the synthesis of silica-containing bioactive surfaces under ambient conditions that do not damage biomolecules like proteins. Here it is shown that growth of human osteosarcoma SaOS-2 cells on cluster plates precoated with Type 1 collagen is not affected by additional coating of the plates with the recombinant silicatein and incubation with its enzymatic substrate, tetraethoxysilane (TEOS). However, the enzymatic modification of the plates by biosilica deposition on the protein-coated surface caused a marked increase in calcium phosphate formation of SaOS-2 cells as revealed by alizarin red-S staining to quantify calcium mineral content. The increased occurrence of calcium-phosphate nodules on the modified surface was also observed by scanning electron microscopy. These results suggest that by supporting calcium-phosphate deposition in vitro, biosilica (silicatein)-modified surfaces are potentially bioactive in vivo, by stimulating osteoblast mineralization function.
Dissociated cells from marine demosponges retain their proliferation capacity if they are allowed to form special aggregates, the primmorphs. On the basis of incorporation studies and septin gene expression, we show that Fe3+ ions are required for the proliferation of cells in primmorphs from Suberites domuncula. In parallel, Fe3+ induced the expression of ferritin and strongly stimulated the synthesis of spicules. This result is supported by the finding that the enzymatic activity of silicatein, converting organosilicon to silicic acid, depends on Fe3+. Moreover, the expression of a scavenger receptor molecule, possibly involved in the morphology of spicules, depends on the presence of Fe3+. We conclude that iron is an essential factor in proliferative and morphogenetic processes in primmorphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.