In an effort to determine the specific protein component(s) responsible for in vitro activation of the [FeFe] hydrogenase (HydA), the individual maturation proteins HydE, HydF, and HydG from Clostridium acetobutylicum were purified from heterologous expressions in Escherichia coli. Our results demonstrate that HydF isolated from a strain expressing all three maturation proteins is sufficient to confer hydrogenase activity to purified inactive heterologously expressed HydA (expressed in the absence of HydE, HydF, and HydG). These results represent the first in vitro maturation of [FeFe] hydrogenase with purified proteins, and suggest that HydF functions as a scaffold upon which an H-cluster intermediate is synthesized.
The H-cluster is a complex bridged metal assembly at the active site of [FeFe]-hydrogenases that consists of a [4Fe-4S] subcluster bridged to a 2Fe-containing subcluster with unique nonprotein ligands, including carbon monoxide, cyanide, and a dithiolate ligand of unknown composition. Specific biosynthetic gene products (HydE, HydF, and HydG) responsible for the biosynthesis of the H-cluster and the maturation of active [FeFe]-hydrogenase have previously been identified and shown to be required for the heterologous expression of active [FeFe]-hydrogenase [Posewitz, M. C., et al. (2004) J. Biol. Chem. 279, 25711-25720]. The precise roles of the maturation proteins are unknown; the most likely possibility is that they are directed at the synthesis of the entire 6Fe-containing H-cluster, the 2Fe subcluster, or only the unique ligands of the 2Fe subcluster. The spectroscopic and biochemical characterization of HydA(DeltaEFG) (the [FeFe]-hydrogenase structural protein expressed in the absence of the maturation machinery) reported here indicates that a [4Fe-4S] cluster is incorporated into the H-cluster site. The purified protein in a representative preparation contains Fe (3.1 +/- 0.5 Fe atoms per HydA(DeltaEFG)) and S(2-) (1.8 +/- 0.5 S(2-) atoms per HydA(DeltaEFG)) and exhibits UV-visible spectroscopic features characteristic of iron-sulfur clusters, including a bleaching of the visible chromophore upon addition of dithionite. The reduced protein gave rise to an axial S = (1)/(2) EPR signal (g = 2.04 and 1.91) characteristic of a reduced [4Fe-4S](+) cluster. Mossbauer spectroscopic characterization of (57)Fe-enriched HydA(DeltaEFG) provided further evidence of the presence of a redox active [4Fe-4S](2+/+) cluster. Iron K-edge EXAFS data provided yet further support for the presence of a [4Fe-4S] cluster in HydA(DeltaEFG). These spectroscopic studies were combined with in vitro activation studies that demonstrate that HydA(DeltaEFG) can be activated by the specific maturases only when a [4Fe-4S] cluster is present in the protein. In sum, this work supports a model in which the role of the maturation machinery is to synthesize and insert the 2Fe subcluster and/or its ligands and not the entire 6Fe-containing H-cluster bridged assembly.
The in vitro activation of the [FeFe] hydrogenase is accomplished by combining Escherichia coli cell extracts containing the heterologously expressed inactive HydA with extracts in which hydrogenase-specific maturation proteins HydE, HydF, and HydG are expressed in concert. Interestingly, the process of HydA activation occurs rapidly and in the absence of potential substrates, which suggests that the hydrogenase accessory proteins synthesize an H-cluster precursor that can be quickly transferred to the hydrogenase enzyme to affect activation. HydA activity is observed to be dependent on the protein fraction containing all three accessory proteins expressed in concert and cannot be accomplished with addition of heat-treated extract or extract filtrate, suggesting that the activation of the hydrogenase structural protein is mediated by interaction with the accessory assembly protein(s). These results represent the first important step in understanding the process of H-cluster assembly and provide significant insights into hydrogenase maturation.
Coordinated regulation of gene expression is a hallmark of the Plasmodium falciparum asexual blood-stage development cycle. We report that carbon catabolite repressor protein 4 (CCR4)-associated factor 1 (CAF1) is critical in regulating more than 1,000 genes during malaria parasites' intraerythrocytic stages, especially egress and invasion proteins. CAF1 knockout results in mistimed expression, aberrant accumulation and localization of proteins involved in parasite egress, and invasion of new host cells, leading to premature release of predominantly half-finished merozoites, drastically reducing the intraerythrocytic growth rate of the parasite. This study demonstrates that CAF1 of the CCR4-Not complex is a significant gene regulatory mechanism needed for Plasmodium development within the human host.
Fe-only or FeFe hydrogenases, as they have more recently been termed, possess a uniquely organometallic enzyme active site, termed the H-cluster, where the electronic properties of an iron-sulfur cluster are tuned with distinctly non-biological ligands, carbon monoxide and cyanide. Recently, it was discovered that radical S-adenosylmethionine enzymes were involved in active hydrogenase expression. In the current work, we present a mechanistic scheme for hydrogenase H-cluster biosynthesis in which both carbon monoxide and cyanide ligands can be derived from the decomposition of a glycine radical. The ideas presented have broader implications in the context of the prebiotic origin of amino acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.