The controlled synthesis of materials by methods that permit their assembly into functional nanoscale structures lies at the crux of the emerging field of nanotechnology. Although only one of several materials families is of interest, carbon-based nanostructured materials continue to attract a disproportionate share of research effort, in part because of their wide-ranging properties. Additionally, developments of the past decade in the controlled synthesis of carbon nanotubes and nanofibers have opened additional possibilities for their use as functional elements in numerous applications. Vertically aligned carbon nanofibers (VACNFs) are a subclass of carbon nanostructured materials that can be produced with a high degree of control using catalytic plasma-enhanced chemical-vapor deposition (C-PECVD). Using C-PECVD the location, diameter, length, shape, chemical composition, and orientation can be controlled during VACNF synthesis. Here we review the CVD and PECVD systems, growth control mechanisms, catalyst preparation, resultant carbon nanostructures, and VACNF properties. This is followed by a review of many of the application areas for carbon nanotubes and nanofibers including electron field-emission sources, electrochemical probes, functionalized sensor elements, scanning probe microscopy tips, nanoelectromechanical systems (NEMS), hydrogen and charge storage, and catalyst support. We end by noting gaps in the understanding of VACNF growth mechanisms and the challenges remaining in the development of methods for an even more comprehensive control of the carbon nanofiber synthesis process.
We demonstrate the integration of vertically aligned carbon nanofiber (VACNF) elements with the intracellular domains of viable cells and controlled biochemical manipulation of cells using the nanofiber interface. Deterministically synthesized VACNFs were modified with either adsorbed or covalently-linked plasmid DNA and were subsequently inserted into cells. Post insertion viability of the cells was demonstrated by continued proliferation of the interfaced cells and long-term (> 22 day) expression of the introduced plasmid. Adsorbed plasmids were typically desorbed in the intracellular domain and segregated to progeny cells. Covalently bound plasmids remained tethered to nanofibers and were expressed in interfaced cells but were not partitioned into progeny, and gene expression ceased when the nanofiber was no longer retained. This provides a method for achieving a genetic modification that is non-inheritable and whose extent in time can be directly and precisely controlled. These results demonstrate the potential of VACNF arrays as an intracellular interface for monitoring and controlling subcellular and molecular phenomena within viable cells for applications including biosensors, in-vivo diagnostics, and in-vivo logic devices.
The penetration and residence of vertically aligned carbon nanofibers (VACNF) within live cell matrices is demonstrated upon substrates that incorporate spatially registered indices to facilitate temporal tracking of individual cells. Penetration of DNA-modified carbon nanofibers into live cells using this platform provides efficient delivery and expression of exogenous genes, similar to "microinjection"-styled methods, but on a massively parallel basis. Spatially registered indices on the substrate allow one to conveniently locate individual cells, facilitating temporal tracking of gene expression events. We describe fabrication and use of this gene delivery platform which consists of arrays of individual carbon nanofibers at 5-µm pitch within numerically indexed, 100-µm square grid patterns. Fabrication of these devices on silicon substrates enables mass production of 100 devices (5 mm 2 ) per wafer, with each device providing over 800,000 nanofiber-based "needles" for cellular impalement and gene delivery applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.