SummaryProlonged declines in the number of Steller’s Eider Polysticta stelleri wintering in Europe have raised concerns about the conservation status of the Western Palearctic population. Coordinated helicopter surveys of all known wintering areas in Norway and Russia and ground counts in the Baltic in 2009 found c.27,000 Steller’s Eiders, similar to numbers found during the last such survey in the mid-1990s. However, around 85% of the population now winters in Russia compared to 30–50% then. The reasons for this rapid shift in distribution are unknown but are likely linked to climate change. The continuing small population size, specialist feeding and restricted distribution of Steller’s Eider necessitate continued survey and research to track population changes and provide evidence for conservation management actions to safeguard the species.
Vulnerability mapping of sea-coastal zones is an important element of oil spill response plans, environmental support for offshore projects, and the integrated management of the marine environment. The creation of such maps is a complex scientific problem. In their development, it is necessary to take into account differences in the nature of biotic and abiotic components existing in the cartographic area, dissimilarities in their relative vulnerability and significance, the seasonal variability of ecosystem components, and other factors. The purpose of this paper is to briefly review the main elements of international and Russian methods of mapping the vulnerability of sea-coastal zones to oil spills, and the development problems of such maps, including problems of using rank (ordinal) values, and to note possible solutions. Based on the analysis of key existing international and Russian approaches to vulnerability mapping, it was concluded that almost all methods of map calculations use rank (ordinal) values. However, arithmetic operations cannot be performed with them, as they lead to incorrect results. The paper shortly describes the main problems of mapping the vulnerability of sea-coastal zones to oil (the choice of the map scales and season limits for them, differences in the units of biota abundance, the calculation of relative vulnerability coefficients for the considered biotic components, the summation of the vulnerability of objects of different types, etc.). For some problems, possible solutions are outlined.
Preparedness for oil spill response is a challenge for many coastal countries. Responders are unable to take effective action unless maps that indicate areas with different vulnerability to oil pollution are available. Such maps, developed in many countries, are usually based on calculations with rank (ordinal) values. However, arithmetic operations with them cannot be allowed. The article describes a method of constructing maps using metric values. The calculations take into account the biomass and the quantity of important biota components, especially significant socio-economic objects and protected areas. The biota distribution densities are represented in the identical units. The vulnerability factors are assessed based on the potential impact of spilled oil on biota, as well as its sensitivity and recoverability after disturbance. The proposed method takes into account the different sensitivity of biota inhabiting in the water column and on the sea surface. Oil vulnerability maps for Kola Bay using the proposed algorithm are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.