Aging and cancer are the most important issues to research. The population in the world is growing older, and the incidence of cancer increases with age. There is no doubt about the linkage between aging and cancer. However, the molecular mechanisms underlying this association are still unknown. Several lines of evidence suggest that the oxidative stress as a cause and/or consequence of the mitochondrial dysfunction is one of the main drivers of these processes. Increasing ROS levels and products of the oxidative stress, which occur in aging and age-related disorders, were also found in cancer. This review focuses on the similarities between ageing-associated and cancer-associated oxidative stress and mitochondrial dysfunction as their common phenotype.
Paragangliomas/pheochromocytomas comprise rare tumors that arise from the extra-adrenal paraganglia, with an incidence of about 2 to 8 per million people each year. Approximately 40% of cases are due to genetic mutations in at least one out of more than 30 causative genes. About 2530% of pheochromocytomas/paragangliomas develop under the conditions of a hereditary tumor syndrome a third of which are caused by mutations in the VHL gene. Together, the gene mutations in this disorder have implicated multiple processes including signaling pathways, translation initiation, hypoxia regulation, protein synthesis, differentiation, survival, proliferation, and cell growth. The present review contemplates the mutations associated with the development of pheochromocytomas/paragangliomas and their potential to serve as specific markers of these tumors and their progression. These data will improve our understanding of the pathogenesis of these tumors and likely reveal certain features that may be useful for early diagnostics, malignancy prognostics, and the determination of new targets for disease therapeutics.
BackgroundCarotid body tumor (CBT) is a form of head and neck paragangliomas (HNPGLs) arising at the bifurcation of carotid arteries. Paragangliomas are commonly associated with germline and somatic mutations involving at least one of more than thirty causative genes. However, the specific functionality of a number of these genes involved in the formation of paragangliomas has not yet been fully investigated.MethodsExome library preparation was carried out using Nextera® Rapid Capture Exome Kit (Illumina, USA). Sequencing was performed on NextSeq 500 System (Illumina).ResultsExome analysis of 52 CBTs revealed potential driver mutations (PDMs) in 21 genes: ARNT, BAP1, BRAF, BRCA1, BRCA2, CDKN2A, CSDE1, FGFR3, IDH1, KIF1B, KMT2D, MEN1, RET, SDHA, SDHB, SDHC, SDHD, SETD2, TP53BP1, TP53BP2, and TP53I13. In many samples, more than one PDM was identified. There are also 41% of samples in which we did not identify any PDM; in these cases, the formation of CBT was probably caused by the cumulative effect of several not highly pathogenic mutations. Estimation of average mutation load demonstrated 6–8 mutations per megabase (Mb). Genes with the highest mutation rate were identified.ConclusionsExome analysis of 52 CBTs for the first time revealed the average mutation load for these tumors and also identified potential driver mutations as well as their frequencies and co-occurrence with the other PDMs.Electronic supplementary materialThe online version of this article (10.1186/s12920-018-0327-0) contains supplementary material, which is available to authorized users.
Background: Carotid body tumor (CBT) is a rare neoplasm arising from paraganglion located near the bifurcation of the carotid artery. There is great intra-tumor heterogeneity, and CBT development could be associated with both germline and somatic allelic variants. Studies on the molecular genetics of CBT are limited, and the molecular mechanisms of its pathogenesis are not fully understood. This work is focused on the estimation of mutational load (ML) in CBT. Methods: Using the NextSeq 500 platform, we performed exome sequencing of tumors with matched lymph node tissues and peripheral blood obtained from six patients with CBT. To obtain reliable results in tumors with low ML, we developed and successfully applied a complex approach for the analysis of sequencing data. ML was evaluated as the number of somatic variants per megabase (Mb) of the target regions covered by the Illumina TruSeq Exome Library Prep Kit. Results: The ML in CBT varied in the range of 0.09-0.28/Mb. Additionally, we identified several pathogenic/likely pathogenic somatic and germline allelic variants across six patients studied (including TP53 variants). Conclusions: Using the developed approach, we estimated the ML in CBT, which is much lower than in common malignant tumors. Identified variants in known paraganglioma/pheochromocytoma-causative genes and novel genes could be associated with the pathogenesis of CBT. The obtained results expand our knowledge of the mutation process in CBT as well as the biology of tumor development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.