Trichostatin A (TSA) has previously been used in somatic cell nuclear transfer (SCNT) to improve the cloning efficiency in several species, which led our team to investigate the effects of TSA on the full-term development of bovine SCNT and gaur-bovine interspecies SCNT (gaur iSCNT; gaur somatic cells as donors and bovine oocytes as recipients) embryos. Treatment with 50 nM TSA for 10 h after fusion had no positive effects on the rates of fusion, cleavage, or the development to eight-cell or morula stages in both bovine SCNT and gaur iSCNT embryos. However, TSA treatment significantly enhanced the blastocyst formation rate in bovine SCNT embryos (44 vs. 32-34% in the TSA-treated and TSA-untreated groups, respectively), but had no effects on gaur iSCNT embryos. The fresh blastocysts derived from bovine SCNT and gaur iSCNT embryos (fresh groups), as well as vitrified bovine SCNT blastocysts (vitrified group), were transferred to bovine recipients. We found that TSA treatment increased the pregnancy rates only in recipients receiving fresh bovine SCNT embryos. In recipients receiving TSA-treated bovine SCNT embryos, three cloned calves from the fresh group and twin cloned calves from the vitrified group were delivered; however, no calf was born from the TSA-untreated bovine SCNT embryos. In contrast, one gaur iSCNT calf was born from a recipient receiving blastocysts from the TSA-untreated group. In summary, TSA improved the preimplantation development and pregnancy rates of bovine SCNT embryos, but did not have any beneficial effect on gaur iSCNT embryos. However, one gaur iSCNT calf reached full-term development.
Stem cell-based therapy for liver regeneration has been proposed to overcome the persistent shortage in the supply of suitable donor organs. A requirement for this to succeed is to find a rapid method to detect functional hepatocytes, differentiated from embryonic stem cells. We propose Fourier transform infrared (FTIR) microspectroscopy as a versatile method to identify the early and last stages of the differentiation process leading to the formation of hepatocytes. Using synchrotron-FTIR microspectroscopy, the means of identifying hepatocytes at the single-cell level is possible and explored. Principal component analysis and subsequent partial least-squares (PLS) discriminant analysis is applied to distinguish endoderm induction from hepatic progenitor cells and matured hepatocyte-like cells. The data are well modeled by PLS with endoderm induction, hepatic progenitor cells, and mature hepatocyte-like cells able to be discriminated with very high sensitivity and specificity. This method provides a practical tool to monitor endoderm induction and has the potential to be applied for quality control of cell differentiation leading to hepatocyte formation.
Functional hepatocytes differentiated in vitro from mesenchymal stem cells (MSCs) need to be fully characterized before they could be applied as a therapy to treat liver disease. Here, we employed Fourier Transform Infrared (FTIR) microspectroscopy to investigate the characteristics of hepatocyte-like cells derived from rat bone marrow mesenchymal stem cells (rBM-MSCs) by detecting changes in macromolecular composition occurring during the hepatogenesis process. Partial Least Squares Discriminant Analysis (PLS-DA) enabled us to discriminate undifferentiated rBM-MSCs, and early, mid-stage and late stage rBM-MSCs derived hepatocytes by their characteristic FTIR "spectroscopic signatures". The predominant spectroscopic changes responsible for this discrimination were changes in FTIR absorbance bands at: 3012 cm(-1) (cis C[double bond, length as m-dash]C stretch from unsaturated lipids), 2952 cm(-1) (ν(as)CH(3) from lipids), 2854 cm(-1) (ν(s)CH(2) from lipids) and 1722 cm(-1) (C[double bond, length as m-dash]O stretching from lipids), which were associated with triglyceride and unsaturated fatty acid accumulation in the hepatocyte-like cells occurring during differentiation. Based on these findings, rBM-MSCs derived hepatocytes are characterized by high lipid content which facilitates a means of identifying hepatocytes from their stem cells progenitors by using FTIR microspectroscopy. Other complex changes in spectral bands assigned to proteins and nucleic acids were observed during hepatocyte differentiation indicating that mRNA translation was taking place producing proteins related to the formation of the new hepatocyte-like phenotype, which was corroborated by immunohistochemistry. The results show FTIR microspectroscopy combined with bioinformatic modeling constitutes a powerful new phenotypic-based methodology for monitoring and characterization of the process of stem cell differentiation leading to the formation of hepatocytes, providing complementary information to existing methodologies such as immunohistochemistry and gene analysis, but having advantages of being reagent-free and non-destructive of the sample.
The present study examined transcription levels of the Oct4, DNMT1, DNMT3a, DNMT3b, HAT1 and HDAC1 genes in cloned felid embryos developing from single one-cell to blastocyst stages. IVF, cloned domestic and leopard cat embryos had low Oct4 and HAT1 levels during the early stages, but transcript expression increased at the eight-cell and blastocyst stages. In contrast, expression in the cloned marble cat embryos was low at all stages. Transcription patterns of HDAC1 were altered in cloned embryos compared with IVF embryos. Transcription levels of DNMT1 decreased markedly throughout development of both IVF and cloned embryos. In IVF embryos, DNMT3a transcripts rarely appeared in the four- to eight-cell stages, but levels increased in the morula to blastocyst stages. In contrast, in cloned embryos, DNMT3a transcript levels were high at the one- to two-cell stages, decreased during subsequent cell division and then increased again at the blastocyst stage. The IVF and cloned embryos showed similar DNMT3b transcription patterns, starting with low levels at the two-cell to morula stages and reaching a maximum at the blastocyst stage. These results suggest that the low level of Oct4 transcripts may be responsible, in part, for the failure of blastocyst production in the cloned marbled cat. However, higher transcription of the DNA methylation genes and lower transcription of the histone acetylation genes were observed in cloned compared with IVF embryos, suggesting that the felids' donor nucleus could not completely reprogramme the nuclear genome and so the re-establishment of embryonic totipotency was not achieved.
Somatic cell nuclear transfer (SCNT) holds potential as a useful tool for agricultural and biomedical applications. In vitro development of marbled cat intergeneric SCNT reconstructed into domestic cat cytoplast revealed that cloned, marbled cat embryo development was blocked at the morula stage. No pregnancies resulted from the transfer of one- to eight-cell stage embryos into domestic cat surrogate mothers. This suggested that abnormalities occurred in the cloned marbled cat embryos, which may be associated with incomplete reprogramming during early embryo development. Two pregnancies were established in surrogate mothers that received cloned domestic cat embryos, but SCNT offspring developed abnormally. Some specific phenotypes that were observed included incomplete abdominal wall disclosure, improper fetal development. In addition, some of the fetuses were mummified or stillbirths. The two live births died within 5 days. Telomere lengths of cloned kittens as determined by qualtitative polymerase chain reaction (qPCR) were inconclusive: some were found to be shorter, longer, or the same as donor control cells. Our findings support the hypothesis that telomere lengths do not govern the health of these cloned animals. A lack of complete reprogramming may lead to developmental failure and the abnormalities observed in cloned offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.