It is still a formidable challenge to develop intrinsic self-healing elastomers with simultaneous high mechanical strength, toughness and room-temperature reparability. Herein, we report a mechano-responsive strategy, named as strain induced...
This paper deals with the numerical resolution of the Vlasov-Poisson system in a nearly quasineutral regime by Particle-In-Cell (PIC) methods. In this regime, classical PIC methods are subject to stability constraints on the time and space steps related to the small Debye length and large plasma frequency. Here, we propose an "Asymptotic-Preserving" PIC scheme which is not subject to these limitations. Additionally, when the plasma period and Debye length are small compared to the time and space steps, this method provides a consistent PIC discretization of the quasineutral Vlasov equation. We perform several one-dimensional numerical experiments which provide a solid validation of the method and its underlying concepts, and compare the method with classical PIC and Direct-Implicit methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.