Anomaly detection is a challenging task in the surveillance system due to the factors like extracting appropriate features, inappropriate differentiation among the normal vs abnormal behaviours, the sparse occurrence of abnormal activities and environmental variations. In the dark environment, detection of human actions is still difficult as more features for recognizing the key point are not visible. Hence the proposed work is focused on overcoming the environmental variations task that too in a less bright environment by using thermal videos. Variations in the actions can be easily identified as it works on the property of infrared radiations. For recognizing actions, the skeleton-based approach is used as it helps with the joint-wise segregation of human parts, resulting in more accuracy. The motion pattern of humans in the thermal video is tracked to classify the level of abnormality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.