Purpose: The goal of this study was to understand the role of altered mitochondrial function in breast cancer progression and determine the potential of the molecular alteration signature in developing exosome-based biomarkers.Experimental Design: This study was designed to characterize the critical components regulating mitochondrial function in breast tumorigenesis. Experiments were conducted to assess the potential of these molecules for exosome-based biomarker development.Results: We observed a remarkable reduction in spontaneous metastases through the interplay in mitochondria by SH3GL2, vesicular endocytosis-associated protein and MFN2, an important regulator of mitochondrial fusion. Following its overexpression in breast cancer cells, SH3GL2 translocated to mitochondria and induced the production of superoxide and release of cytochrome C from mitochondria to the cytoplasm. These molecular changes were accompanied by decreased lung and liver metastases and primary tumor growth. SH3GL2 depletion reversed the above phenotypic and associated molecular changes in nontumorigenic and tumorigenic breast epithelial cells. Loss of SH3GL2 and MFN2 expression was evident in primary human breast cancer tissues and their positive lymph nodes, which was associated with disease progression. SH3GL2 and MFN2 expression was detected in sera exosomes of normal healthy women, but barely detectable in the majority of the women with breast cancer exhibiting SH3GL2 and MFN2 loss in their primary tumors.Conclusions: This study identified a new mitochondria reprogramming pathway influencing breast cancer progression through SH3GL2 and MFN2. These proteins were frequently lost in breast cancer, which was traceable in the circulating exosomes. Clin Cancer Res; 22(13); 3348-60. Ó2016 AACR.
Mitochondria (mt) encoded respiratory complex-I (RCI) mutations and their pathogenicity remain largely unknown in prostate cancer (PCa). Little is known about the role of mtDNA loss on mt integrity in PCa. We determined mtDNA mutation in human and mice PCa and assessed the impact of mtDNA depletion on mt integrity. We also examined whether the circulating exosomes from PCa patients are transported to mt and carry mtDNA or mt proteins. We have employed next generation sequencing of the whole mt genome in human and Hi-myc PCa. The impact of mtDNA depletion on mt integrity, presence of mtDNA, and protein in sera exosomes was determined. A co-culture of human PCa cells and the circulating exosomes followed by confocal imaging determined co-localization of exosomes and mt. We observed frequent RCI mutations in human and Hi-myc PCa which disrupted corresponding complex protein expression. Depletion of mtDNA in PCa cells influenced mt integrity, increased expression of MFN1, MFN2, PINK1, and decreased expression of MT-TFA. Increased mt fusion and expression of PINK1 and DNM1L were also evident in the Hi-myc tumors. RCI-mtDNA, MFN2, and IMMT proteins were detected in the circulating exosomes of men with benign prostate hyperplasia (BPH) and progressive PCa. Circulating exosomes and mt co-localized in PCa cells. Our study identified new pathogenic RCI mutations in PCa and defined the impact of mtDNA loss on mt integrity. Presence of mtDNA and mt proteins in the circulating exosomes implicated their usefulness for biomarker development.
Human papilloma virus-16 (HPV-16) associated oropharyngeal cancer (HPVOPC) is increasing alarmingly in the United States. We performed whole genome sequencing of a 44 year old, male HPVOPC subject diagnosed with moderately differentiated tonsillar carcinoma. We identified new somatic mutation in MUC16 (A.k.a. CA-125), MUC12, MUC4, MUC6, MUC2, SIRPA, HLA-DRB1, HLA-A and HLA-B molecules. Increased protein expression of MUC16, SIRPA and decreased expression of HLA-DRB1 was further demonstrated in this HPVOPC subject and an additional set of 15 HPVOPC cases. Copy number gain (3 copies) was also observed for MUC2, MUC4, MUC6 and SIRPA. Enhanced expression of MUC16, SIRPA and HPV-16-E7 protein was detectable in the circulating exosomes of numerous HPVOPC subjects. Treatment of non-tumorigenic mammary epithelial cells with exosomes derived from aggressive HPVOPC cells harboring MUC16, SIRPA and HPV-16-E7 proteins augmented invasion and induced epithelial to mesenchymal transition (EMT) accompanied by an increased expression ratio of the EMT markers Vimentin/E-cadherin. Exosome based screening of key HPVOPC associated molecules could be beneficial for early cancer diagnosis, monitoring and surveillance.
Bronchiectasis Nontuberculous mycobacterium (NTMnb) infection is an emerging health problem in breast cancer (BCa) patients. We measured sera exosome proteome in BCa-NTMnb subjects and controls by Mass Spectroscopy. Extracellular matrix protein 1 (ECM1) was detected exclusively in the circulating exosomes of 82% of the BCa-NTMnb cases. Co-culture of ECM1+ exosomes with normal human mammary epithelial cells induced epithelial to mesenchymal transition accompanied by increased Vimentin/CDH1 expression ratio and Glutamate production. Co-culture of the ECM1+ exosomes with normal human T cells modulated their cytokine production. The ECM1+ exosomes were markedly higher in sera obtained from BCa-NTMnb subjects. Exclusive expression of APN, APOC4 and AZGP1 was evident in the circulating exosomes of these BCa-NTMnb cases, which predicts disease prevalence independent of the body max index in concert with ECM1. Monitoring ECM1, APN, APOC4 and AZGP1 in the circulating exosomes could be beneficial for risk assessment, monitoring and surveillance of BCa-NTMnb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.