A serious concern with present designs of solid oxide fuel cells is the requirement that “triple-point junctions” exist, sites at which the cathode, electrolyte and oxidizing gas are in simultaneous contact. Only at these junctions can the cathode catalyze the reduction of oxygen into 0= ions and initiate their subsequent transport through the electrolyte. Enhanced ionic conductivity in the cathode material may increase the surface area over which reduction can take place and relax the triple-point constraint. To this end, we have examined the electrical and structural properties of LaCo1-xMgx03-δ materials under various atmospheres. Oxygen ion transport in this and related ABO3 perovskites takes place via oxygen vacancy migration. We have opted to investigate the effect of Mg doping on the transition metal site in an effort to maintain a significant oxygen vacancy concentration in oxidizing atmospheres (as would be encountered during fuel cell operation) and to isolate the effects of A- and B-site doping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.