Remote monitoring and operation evaluation applications for industrial environments are modern and easy means of exploiting the provided resources of specific systems. Targeted micro hydropower plant functionalities (such as tracking and adjusting the values of functional parameters, real-time fault and cause signalizing, condition monitoring assurance, and assessments of the need for maintenance activities) require the design of reliable and efficient devices or systems. The present work describes the design and implementation procedure of an Industrial Internet of Things (IIoT) system configured for a basic micro hydropower plant architecture and assuring simple means of customization for plant differences in structure and operation. The designed system features a set of commonly used functions specific to micro hydropower exploitation, providing maximum performance and efficiency.
The specific equipment, installation and machinery infrastructure of an electric power system have always required specially designed data acquisition systems and devices to ensure their safe operation and monitoring. Besides maintenance, periodical upgrade must be ensured for these systems, to meet the current practical requirements. Monitoring, testing, and diagnosis altogether represent key activities in the development process of electric power elements. This work presents the detailed structure and implementation of a complex, configurable system which can assure efficient monitoring, testing, and diagnosis for various electric power infrastructures, with proven efficiency through a comprehensive set of experimental results obtained in real running conditions. The developed hardware and software implementation is a robust structure, optimized for acquiring a large variety of electrical signals, also providing easy and fast connection within the monitored environment. Its high level of configurability and very good price–performance ratio makes it an original and handy solution for electric power infrastructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.