Pluripotent stem cells demonstrate an inherent propensity for unrestricted multi-lineage differentiation. Translation into regenerative applications requires identification and isolation of tissue-specified progenitor cells. From a comprehensive pool of 11,272 quality-filtered genes, profiling embryonic stem cells at discrete stages of cardiopoiesis revealed 736 transcripts encoding membrane-associated proteins, where 306 were specifically upregulated with cardiogenic differentiation. Bioinformatic dissection of exposed surface biomarkers prioritized the chemokine receptor cluster as the most significantly over-represented gene receptor family during pre cardiac induction, with CXCR4 uniquely associated with mesendoderm formation. CXCR4؉ progenitors were sorted from the embryonic stem cell pool into mesoderm-restricted progeny according to co-expression with the early mesoderm marker Flk-1. In contrast to CXCR4 ؊ /Flk-1 ؊ cells, the CXCR4 ؉ /Flk-1 ؉ subpopulation demonstrated overexpressed cardiac lineage transcription factors (Mef2C, Myocardin, Nkx2.5), whereas pluripotent genes (Oct4, Fgf4, Sox2) as well as neuroectoderm (Sox1) and endoderm alpha-fetoprotein markers were all depleted. In fact, the CXCR4 ؉ /Flk-1 ؉ biomarker combination identified embryonic stem cell progeny significantly enriched with Mesp-1, GATA-4, and Tbx5, indicative of pre cardiac mesoderm and the primary heart field. Although the CXCR4 ؉ /Flk-1 ؉ transcriptome shared 97% identity with the CXCR4 ؊ /Flk-1 ؊ counterpart, the 818 divergent gene set represented predominantly cardiovascular developmental functions and formed a primitive cardiac network. Differentiation of CXCR4؉ /Flk-1 ؉ progenitors yielded nuclear translocation of myocardial transcription factors and robust sarcomerogenesis with nascent cardiac tissue demonstrating beating activity and calcium transients. Thus, the CXCR4/Flk-1 biomarker pair predicts the emergence of cardiogenic specification within a pluripotent stem cell pool, enabling targeted selection of cardiopoietic lineage.
Background Whole-genome gene expression analysis has been successfully utilized to diagnose, prognosticate, and identify potential therapeutic targets for high-risk cardiovascular diseases. However, the feasibility of this approach to identify outcome-related genes and dysregulated pathways following first-time myocardial infarction (AMI) remains unknown and may offer a novel strategy to detect affected expressome networks that predict long-term outcome. Methods and Results Whole-genome expression microarray on blood samples from normal cardiac function controls (n=21) and first-time AMI patients (n=31) within 48-hours post-MI revealed expected differential gene expression profiles enriched for inflammation and immune-response pathways. To determine molecular signatures at the time of AMI associated with long-term outcomes, transcriptional profiles from sub-groups of AMI patients with (n=5) or without (n=22) any recurrent events over an 18-month follow-up were compared. This analysis identified 559 differentially-expressed genes. Bioinformatic analysis of this differential gene-set for associated pathways revealed 1) increasing disease severity in AMI patients is associated with a decreased expression of genes involved in the developmental epithelial-to-mesenchymal transition pathway, and 2) modulation of cholesterol transport genes that include ABCA1, CETP, APOA1, and LDLR is associated with clinical outcome. Conclusion Differentially regulated genes and modulated pathways were identified that were associated with recurrent cardiovascular outcomes in first-time AMI patients. This cell-based approach for risk stratification in AMI could represent a novel, non-invasive platform to anticipate modifiable pathways and therapeutic targets to optimize long-term outcome for AMI patients and warrants further study to determine the role of metabolic remodeling and regenerative processes required for optimal outcomes.
SUMMARY Embryonic stem cell differentiation recapitulates the diverse phenotypes of a developing embryo, traceable according to markers of lineage specification. At gastrulation, the vascular endothelial growth factor (VEGF) receptor, Flk-1 (KDR), identifies a mesoderm-restricted potential of embryonic stem cells. The multi-lineage propensity of Flk-1+ progenitors mandates the mapping of fate-modifying co-factors in order to stratify differentiating cytotypes and predict lineage competency. Here, Flk-1 based selection of early embryonic stem cell progeny separated a population depleted of pluripotent (Oct4, Sox2) and endoderm (Sox17) markers. The gene expression profile of the Flk-1+ population was notable for a significant upregulation in the vasculogenic Sox7 transcription factor, which overlapped with the emergence of primordial cardiac transcription factors GATA-4, Myocardin and Nkx2.5. Sorting the parental Flk-1+ pool with the chemokine receptor CXCR4 to enrich the cardiopoietic subpopulation uncovered divergent Sox7 expression, with a 7-fold induction in non-cardiac compared to cardiac progenitors. Bioinformatic resolution sequestered a framework gene expression relationships between Sox transcription factor family members and the Flk-1/CXCR4 axes with significant integration of β-catenin signaling. Thus, differential Sox7 gene expression presents a novel biomarker profile, and possible regulatory switch, to distinguish cardiovascular pedigrees within Flk-1+ multi-lineage progenitors.
BackgroundPluripotent stem cells produce tissue-specific lineages through programmed acquisition of sequential gene expression patterns that function as a blueprint for organ formation. As embryonic stem cells respond concomitantly to diverse signaling pathways during differentiation, extraction of a pro-cardiogenic network would offer a roadmap to streamline cardiac progenitor output.Methods and ResultsTo resolve gene ontology priorities within precursor transcriptomes, cardiogenic subpopulations were here generated according to either growth factor guidance or stage-specific biomarker sorting. Innate expression profiles were independently delineated through unbiased systems biology mapping, and cross-referenced to filter transcriptional noise unmasking a conserved progenitor motif (55 up- and 233 down-regulated genes). The streamlined pool of 288 genes organized into a core biological network that prioritized the “Cardiovascular Development” function. Recursive in silico deconvolution of the cardiogenic neighborhood and associated canonical signaling pathways identified a combination of integrated axes, CXCR4/SDF-1, Flk-1/VEGF and BMP2r/BMP2, predicted to synchronize cardiac specification. In vitro targeting of the resolved triad in embryoid bodies accelerated expression of Nkx2.5, Mef2C and cardiac-MHC, enhanced beating activity, and augmented cardiogenic yield.ConclusionsTranscriptome-wide dissection of a conserved progenitor profile thus revealed functional highways that coordinate cardiogenic maturation from a pluripotent ground state. Validating the bioinformatics algorithm established a strategy to rationally modulate cell fate, and optimize stem cell-derived cardiogenesis.
Genomic perturbations that challenge normal signaling at the pluripotent stage may trigger unforeseen ontogenic aberrancies. Anticipatory systems biology identification of transcriptome landscapes that underlie latent phenotypes would offer molecular diagnosis before the onset of symptoms. The purpose of this study was to assess the impact of calreticulin-deficient embryonic stem cell transcriptomes on molecular functions and physiological systems. Bioinformatic surveillance of calreticulin-null stem cells, a monogenic insult model, diagnosed a disruption in transcriptome dynamics, which re-prioritized essential cellular functions. Calreticulin-calibrated signaling axes were uncovered, and network-wide cartography of undifferentiated stem cell transcripts suggested cardiac manifestations. Calreticulin-deficient stem cell-derived cardiac cells verified disorganized sarcomerogenesis, mitochondrial paucity, and cytoarchitectural aberrations to validate calreticulin-dependent network forecasts. Furthermore, magnetic resonance imaging and histopathology detected a ventricular septal defect, revealing organogenic manifestation of calreticulin deletion. Thus, bioinformatic deciphering of a primordial calreticulin-deficient transcriptome decoded at the pluripotent stem cell stage a reconfigured multifunctional molecular registry to anticipate predifferentiation susceptibility toward abnormal cardiophenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.