Background. Metformin is an effective treatment option for type 2 diabetes mellitus, and it is, to this day, the most prescribed oral antiglycaemic drug. Besides its effects mainly on mitochondrial activity, an off-label use came up as a pharmaceutical for subjects with a diagnosis of polycystic ovarian syndrome (PCOS) along with altered steroid hormone homeostasis. Besides these effects, even an influence on mood and social behavior was described, leading to the aim of this case report to elucidate the effects before versus after treatment with metformin on steroid hormones and social behavior. Methods. A female patient with diagnosed PCOS was analyzed three times for steroid hormone levels. The first analysis was performed before treatment; the second, after a period of 71 days with metformin at 2 × 500 mg; and the third, after a total of 144 days with metformin at 2 × 500 mg. Spot urine probes were taken in the morning for a combined gas chromatography–mass spectrometry (GC-MS), and the steroid levels were adjusted for creatinine excretion. A questionnaire on social behavior (Autism Spectrum Questionnaire) was administered before treatment and after 71 days. Results. A decrease in all the steroid hormones measured was detected after 71 and 144 days of treatment with metformin, being more pronounced after 144 days of treatment and highly significant (p < 0.001). Furthermore, in the untreated state, the class of corticosterone metabolites showed increased values compared to the female reference values for TH-11-DH-corticosterone, TH-corticosterone, and 5a-TH-corticosterone. In the class of estrogen metabolites, increased values compared to the reference values were detected for 17b-estradiol; in the class of 11-deoxycortisol metabolites, an increase in TH-11-deoxycortisol was detected. For the class of cortisol metabolites, increased values compared to the reference values were detected for cortisone, TH-cortisone, a-cortolone, b-cortolone, 20b-dihydrocortisone, cortisol, TH-cortisol, 5a-TH-cortisol, a-cortol, 20b-dihydrocortisol, and 6b-OH-cortisol. No increases in androgen metabolites were detected. Interestingly, weight decreased from 93.4 kg to 91.3 kg after 71 days and fell to 82.7 kg after 144 days of treatment. The skeletal muscle mass was 30.1 kg at the first visit, decreasing to 29.9 kg and to 27.5 kg. No significant difference in the social behavior score from baseline to after 71 days of treatment was detected. Discussion. Metformin improved the steroid hormone profiles from levels above the upper reference values to the middle of the reference values after 71 days and to the lower ends of the reference values after 144 days of treatment. This implies not only that metformin has an effect on steroid hormone levels, but in addition that the efficacy of the pharmaceutical seems to depend on the time interval from intake. To summarize, in this patient, steroid hormones were affected but social behavior was not. If no effect of metformin on social behavior exists, this must be supported by further cases.
Background: We recently reported that metformin administration has substantial effects on steroid hormone concentrations. In this study, we specifically explored which enzymatic activities were affected before a first treatment versus after a time of metformin treatment. Material and Methods: Twelve male subjects (54.2 ± 9.1 years, 177.3 ± 4.1 cm, 80 ± 10.4 kg) and seven female subjects (57.2 ± 18.9 years, 162.7 ± 4.1 cm, 76.1 ± 10.4 kg) were recruited based on an indication of metformin. Prior to the first intake of metformin and after 24 h, urine collections were performed. Urine steroid analysis was completed using gas chromatography–mass spectrometry. Results: The average reduction in steroid hormone concentrations after the metformin treatment was substantial and relatively equally distributed in all metabolites and the sum of all metabolites with 35.4%. An exception was dehydroepiandrosterone, with a decrease of almost three hundred percent of average concentration. In addition, the sum of all cortisol metabolites and 18-OH cortisol (indicative of oxidative stress) were lower after the metformin treatment. Furthermore, significant inhibition of 3ß-HSD activity was detectable. Discussion: Effects prior to and after the metformin treatment on inhibiting 3ß-HSD activity were detected in line with findings from others. Furthermore, the pattern of a reduction, for example, in the sum of all glucocorticoids following the metformin treatment supported an effect on oxidative stress, which was further supported by the reduction in 18-OH cortisol. Nevertheless, we do not understand all steps in the complex pattern of the enzymes that affect steroid hormone metabolism and, consequently, further studies are necessary to improve our understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.