Growth in three-dimensional (3D) architectures has been suggested to play an important role in tumor expansion and in the resistance of cancers to treatment with drugs or cytokines or irradiation. To obtain an insight into underlying molecular mechanisms, we addressed gene expression profiles of NA8 melanoma cells cultured in bidimensional monolayers (2D) or in 3D multicellular tumor spheroids (MCTS). MCTS containing 10-30,000 cells were generated upon overnight culture in poly-Hydroxyethylmethacrylate (polyHEMA) coated plates. Kinetics of cell proliferation in MCTS was significantly slower than in monolayer cultures. Following long-term culture (>10 days), however, MCTS showed highly compact and organised cell growth in outer layers, with necrotic cores. Oligonucleotide microarray analysis of the expression of over 20,000 genes was performed on cells cultured in standard 2D, in the presence of collagen as model of extracellular matrix (ECM), or in MCTS. Gene expression profiles of cells cultured in 2D in the presence or absence of ECM were highly similar, with >/=threefold differences limited to five genes. In contrast, culture in MCTS resulted in the significant, >/=threefold, upregulation of the expression of >100 transcripts while 73 were >/=threefold downregulated. In particular, genes encoding CXCL1, 2, and 3 (GRO-alpha, -beta, and gamma), IL-8, CCL20 (MIP-3alpha), and Angiopoietin-like 4 were significantly upregulated, whereas basic FGF and CD49d encoding genes were significantly downregulated. Oligonucleotide chip data were validated at the gene and protein level by quantitative real-time PCR, ELISA, and cell surface staining assays. Taken together, our data indicate that structural modifications of the architecture of tumor cell cultures result in a significant upregulation of the expression of a number of genes previously shown to play a role in melanoma progression and metastatic process.
Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in common and koi carp industries, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open reading frame 134 (ORF134), we unexpectedly obtained a clone with additional deletion of ORF56 and ORF57. This triple deleted recombinant replicated efficiently in vitro and expressed an in vivo safety/efficacy profile compatible with use as an attenuated vaccine. To determine the role of the double ORF56-57 deletion in the phenotype and to improve further the quality of the vaccine candidate, a series of deleted recombinants was produced and tested in vivo. These experiments led to the selection of a double deleted recombinant lacking ORF56 and ORF57 as a vaccine candidate. The safety and efficacy of this strain were studied using an in vivo bioluminescent imaging system (IVIS), qPCR, and histopathological examination, which demonstrated that it enters fish via skin infection similar to the wild type strain. However, compared to the parental wild type strain, the vaccine candidate replicated at lower levels and spread less efficiently to secondary sites of infection. Transmission experiments allowing water contamination with or without additional physical contact between fish demonstrated that the vaccine candidate has a reduced ability to spread from vaccinated fish to naïve sentinel cohabitants. Finally, IVIS analyses demonstrated that the vaccine candidate induces a protective mucosal immune response at the portal of entry. Thus, the present study is the first to report the rational development of a recombinant attenuated vaccine against CyHV-3 for mass vaccination of carp. We also demonstrated the relevance of the CyHV-3 carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin.
Wildebeests carry asymptomatically alcelaphine herpesvirus 1 (AlHV-1), a γ-herpesvirus inducing malignant catarrhal fever (MCF) to several ruminant species (including cattle). This acute and lethal lymphoproliferative disease occurs after a prolonged asymptomatic incubation period after transmission. Our recent findings with the rabbit model indicated that AlHV-1 infection is not productive during MCF. Here, we investigated whether latency establishment could explain this apparent absence of productive infection and sought to determine its role in MCF pathogenesis. First, whole-genome cellular and viral gene expression analyses were performed in lymph nodes of MCF-developing calves. Whereas a severe disruption in cellular genes was observed, only 10% of the entire AlHV-1 genome was expressed, contrasting with the 45% observed during productive infection in vitro. In vivo, the expressed viral genes included the latency-associated nuclear antigen homolog ORF73 but none of the regions known to be essential for productive infection. Next, genomic conformation analyses revealed that AlHV-1 was essentially episomal, further suggesting that MCF might be the consequence of a latent infection rather than abortive lytic infection. This hypothesis was further supported by the high frequencies of infected CD8 + T cells during MCF using immunodetection of ORF73 protein and single-cell RT-PCR approaches. Finally, the role of latency-associated ORF73 was addressed. A lack of ORF73 did not impair initial virus replication in vivo, but it rendered AlHV-1 unable to induce MCF and persist in vivo and conferred protection against a lethal challenge with a WT virus. Together, these findings suggest that a latent infection is essential for MCF induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.