Oxidative stress has been incriminated in the physiopathology of many diseases, such as diabetes, cancer, atherosclerosis, and cardiovascular and neurodegenerative diseases. There is a great interest in developing new antioxidants that could be useful for preventing and treating conditions for which oxidative stress is suggested as the root cause. The thiazolidine-2,4-dione derivatives have been reported to possess various pharmacological activities and the phenol moiety is known as a pharmacophore in many naturally occurring and synthetic antioxidants. Twelve new phenolic derivatives of thiazolidine-2,4-dione were synthesized and physicochemically characterized. The antioxidant capacity of the synthesized compounds was assessed through several in vitro antiradical, electron transfer, and Fe2+ chelation assays. The top polyphenolic compounds 5f and 5l acted as potent antiradical and electron donors, with activity comparable to the reference antioxidants used. The ferrous ion chelation capacity of the newly synthesized compounds was modest. Several quantum descriptors were calculated in order to evaluate their influence on the antioxidant and antiradical properties of the compounds and the chemoselectivity of the radical generation reactions has been evaluated. The correlation with the energetic level of the frontier orbitals partially explained the antioxidant activity, whereas a better correlation was found while evaluating the O–H bond dissociation energy of the phenolic groups.
The global spread of bacterial resistance to drugs used in therapy requires new potent and safe antimicrobial agents. DNA gyrases represent important targets in drug discovery. Schiff bases, thiazole, and triazole derivatives are considered key scaffolds in medicinal chemistry. Fifteen thiazolyl-triazole Schiff bases were evaluated for their antibacterial activity, measuring the growth inhibition zone diameter, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC), against Gram-positive (Staphylococcus aureus, Listeria monocytogenes) and Gram-negative (Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa) bacteria. The inhibition of S. aureus and S. typhimurium was modest. Compounds B1, B2, and B9 showed a similar effect as ciprofloxacin, the antimicrobial reference, against L. monocytogenes. B10 displayed a better effect. Derivatives B1, B5–7, B9, and B11–15 expressed MIC values lower than the reference, against L. monocytogenes. B5, B6, and B11–15 strongly inhibited the growth of P. aeruginosa. All compounds were subjected to an in silico screening of the ADMET (absorption, distribution, metabolism, elimination, toxicity) properties. Molecular docking was performed on the gyrA and gyrB from L. monocytogenes. The virtual screening concluded that thiazolyl-triazole Schiff base B8 is the best drug-like candidate, satisfying requirements for both safety and efficacy, being more potent against the bacterial gyrA than ciprofloxacin.
In the context of the dangerous phenomenon of fungal resistance to the available therapies, we present here the chemical synthesis of a new series of thiazolyl-triazole Schiff bases -, which were in vitro assessed for their anti- potential. Compound was found to be more potent against spp. when compared with the reference drugs Fluconazole and Ketoconazole. A docking study of the newly synthesized Schiff bases was performed, and results showed good binding affinity in the active site of co-crystallized Itraconazole-lanosterol 14α-demethylase isolated from . An in silico ADMET (absorption, distribution, metabolism, excretion, toxicity) study was done in order to predict some pharmacokinetic and pharmacotoxicological properties. The Schiff bases showed good drug-like properties. The results of in vitro anti- activity, a docking study and ADMET prediction revealed that the newly synthesized compounds have potential anti- activity and evidenced the most active derivative, , which can be further optimized as a lead compound.
A series of 12 new thiazolidine-2,4-dione derivatives were obtained by microwave-assisted synthesis. All compounds were physicochemically characterized by quantitative elemental C, H, N, S analysis and spectral data (mass spectrometry [MS], infrared [IR], and nuclear magnetic resonance [NMR]), with the results being in agreement with the expected data. An in vitro screening performed on Candida albicans ATCC 10231 showed their moderate antifungal activity, which was further investigated by determining the minimum inhibitory concentration and minimum fungicidal concentration values for the most active compounds on four strains of Candida. The molecular docking studies, performed against a fungal lanosterol 14α-demethylase, emphasized the importance of different molecular fragments in the compounds' structures for their antifungal activity. The synthesized compounds were subjected to in silico screening for the prediction of their absorption, distribution, metabolism, excretion, and toxicity (ADMET) and molecular properties. The results of the antifungal activity assays, docking study, and ADMET predictions revealed that the synthesized compounds are potential anti- Candida agents that might act by interacting with the fungal lanosterol 14α-demethylase and could be further optimized and developed as antifungal agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.