Ecological restoration is difficult on the red clay highway slopes in the rainy areas in South China that experience severe soil erosion. By using the hydrophilic polyurethane material W-OH to solidify and protect red clay slopes, the erosion control will be substantially improved. We employed simulated rainfall erosion experiments and pot experiments to evaluate the anti-corrosion and growth promotion performances. We found that, (1) in the initial stage of protection, W-OH had the effect of accelerating slope drainage, solidifying the soil structure, and reducing soil loss, with the sediment reduction benefit reaching 37.4–65.3%. (2) The anti-erosion effect was mainly based on soil solidification. (3) The W-OH was affected by rainfall intensity and the W-OH concentration, and the soil erosion prediction equation was constructed according to the observation. (4) W-OH had a promising water retention performance and can promote the germination and late growth of slope plants to reduce the influence of eluviation. (5) The suitable W-OH solution concentration was 3–5% for slope protection herbs and shrubs, which were commonly used in South China. (6) The reduction in porosity was the fundamental cause of water retention improvement. The ecological restoration of slopes is a comprehensive process. Therefore, both anti-erosion performance and later plant growth are necessary. Our research provides a theoretical and experimental basis for applying the W-OH in the ecological restoration of the red clay slopes in subtropical areas and expanding the scope of the W-OH.
A variety of slope water and soil conservation measures have been taken along the Qinghai-Tibet Highway, but the systematic comparison of their erosion control ability needs to be strengthened, especially in the permafrost area. To explore the applicability of different measures to control runoff and sediment yield, field scouring experiments were conducted for different ecologically protected slopes, including turfing (strip, block, full), slope covering (gravel, coconut fiber blanket), and comprehensive measures (three-dimensional net seeding). Compared with the bare slope, the bulk density of the plots with the ecological protection measure decreased, the moisture-holding capacity and the organic matter increased correspondingly, and the average runoff velocity also decreased. The soil loss and runoff had a similar trend of different ecological protection measures. The relationship between the cumulative runoff and sediment yield of different measures exhibited a power function, with the increase of scouring flow and the runoff reduction benefit and sediment reduction benefit in different ecological protection-measured plots showing a decreasing trend. The average runoff reduction benefit decreased from 37.06% to 6.34%, and the average sediment reduction benefit decreased from 43.04% to 10.86%. The comprehensive protection measures had the greatest protection efficiency, followed by turfing, while the cover measure had limited improvement. Soil characteristics, vegetation coverage, and the scouring inflow rate are key factors that influence protection efficiency. The results suggest that comprehensive measures and turfing be taken rather than cover measures or bare slopes. This work provides an experimental reference for ecological protection methods for highway slopes in the permafrost area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.