BACKGROUND Thymol, a natural phenolic monoterpene originating from Thymus vulgaris, is recognized as a safe and potent botanical insecticide to many insects. The structural modification of thymol into thymyl esters is a potential approach for the development of novel insecticides, which showed more toxicity than thymol. However, there are no reports on the insecticidal activity of thymyl esters to control Spodoptera litura. RESULTS Thymol was structurally modified into ten thymyl esters by esterification using a new reagent, PPh3/Br3CSO2Ph. The insecticidal activity of these compounds was examined against the second instars of Spodoptera litura using a topical application. Among the ten thymyl esters evaluated, thymyl cinnamate was the most toxic with LD50 = 0.41 and 0.34 μg/larva after 24 and 48 h posttreatment, respectively. In addition, thymyl cinnamate‐treated larvae showed increasing carboxylesterase and acetylcholinesterase activities in vivo experiment, whereas glutathione S‐transferase activity showed no significant difference. CONCLUSION Thymyl cinnamate were first reported to exhibit toxicity against S. litura 2.41–2.46 fold more efficient than thymol. However, the detailed biochemical interactions are necessary for further development of novel insecticides. © 2019 Society of Chemical Industry
Background: Spodoptera litura larvae are polyphagous insects that have become a significant pest in recent years. The spread of this pest has led to the continuous usage of insecticides on crops. Some plant extracts have been used as a mixture to control insect pests and improve productivity. Methods: A plant-based mixture was mixed at a ratio of 1:1 v/v to demonstrate the effect on contact toxicity, feeding (no-choice test), and enzyme activities on S. litura. The active compounds of P. retrofractum and A. calamus were isolated by preparative thin-layer chromatography (PTLC). Results: Our results showed that binary mixtures from P. retrofractum and A. calamus exhibit the highest contact toxicity and antifeedant activity at a 1:1 ratio of LD 30 :LD 10 dose (3.213 µg/larva P. retrofractum + 3.294 µg/larva A. calamus). The main active ingredient from each crude extract was (2E,4E,14Z)-N-isobutylicosa-2,4,14-trienamide from P. retrofractum, and beta-asarone and alpha-asarone from A. calamus. Additionally, A. calamus seems to be the synergistic compound. Some compound mixtures increased the glutathione-S-transferase activities in vivo; whereas, almost no significant differences in esterase activities were noted. Conclusion: The results indicated that the ethanolic crude extracts of P. retrofractum and A. calamus mixtures could be used as the pesticidal compound and to develop a binary mixture formulation for controlling lepidopteran pests. However, the toxicity of this mixture to mammals needed to be explored before commercial development.
Efficient optimization procedures in chiral catalysis are usually linked to a straightforward strategy to access groups of structurally similar catalysts required for fine-tuning. The ease of building up such ligand libraries can be increased when the structure-modifying step (introduction of a substituent) is done at a later stage of the synthesis. This is demonstrated for the extended family of di- and tetranaphtho azepinium compounds, widely used as chiral phase transfer catalysts (PTC). Using 2,6-diiodo-4,5-dihydro-3H-dinaphtho[2,1-c:1′,2′-e]azepine and 4,8-diiodo-6,7-dihydro-5H-dibenzo[c,e]azepine, respectively, as key intermediates, 18 spiro-azepinium compounds were synthesized in a total yield of 25–42% over 6–7 steps from 1,1′-binaphthyl-2,2′-dicarboxylic acid or diphenic acid, respectively. The replacement of iodo groups with aryl substituents was performed as the last or the penultimate step of the synthesis.
Spodoptera frugiperda, a highly polyphagous insect pest from America, has recently invaded and widely spread throughout Africa and Asia. Effective and environmentally safe tools are needed for successful pest management of this invasive species. Natural molecules extracted from plants offer this possibility. Our study aimed to determine the insecticidal efficacy of a new molecule extracted from Alpinia galanga rhizome, the 1′S-1′-acetoxychavicol acetate (ACA). The toxicity of ACA was assessed by topical application on early third-instar larvae of S. frugiperda. Results showed that ACA caused significant larval growth inhibition and larval developmental abnormalities. In order to further explore the effects of this molecule, experiments have been performed at the cellular level using Sf9 model cells. ACA exhibited higher toxicity on Sf9 cells as compared to azadirachtin and was 38-fold less toxic on HepG2 cells. Inhibition of cell proliferation was observed at sublethal concentrations of ACA and was associated with cellular morphological changes and nuclear condensation. In addition, ACA induced caspase-3 activity. RT-qPCR experiments reveal that ACA induces the expression of several caspase genes. This first study on the effects of ACA on S. frugiperda larvae and cells provides evidence that ACA may have potential as a botanical insecticide for the control of S. frugiperda.
Botanical insecticides as a means of controlling insects present an alternative approach that is safer than the use of synthetic insecticides. The present study identified the insecticidal activity of extracts of the rhizomes of Alpinia galanga (L.) Willd. and seven isolated phenylpropanoids against the second instar of Spodoptera litura Fab. by topical application.The ethyl acetate extract had the highest toxicity on this insect with LD 50 values of 1.68 and 1.25 μg/larva after 24 and 48 h posttreatment, respectively. Among the seven phenylpropanoids separated from the ethyl acetate extract, 1'S-1'-acetoxychavicol acetate was identified as the most active compound with LD 50 values of 1.63 and 1.40 g/larva after 24 and 48 h posttreatment, respectively, followed by p-coumaryl diacetate. In addition, the two active compounds decreased glutathione S-transferase activity and increased acetylcholinesterase activity. p-Coumaryl diacetate also decreased carboxylesterase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.