Charge transfer (CT) interactions of the dibutyl ester of N-(4-carboxyphenyl)trimellitimide (NCTD) dissolved in organic solvents have been investigated by means of UV absorption and fluorescence spectroscopy and time-resolved fluorescence measurements. The spectroscopic data are interpreted in connection with quantum mechanical calculations using the AM1 and ZINDO/S method. The electronic transition lowest in energy, observed as an absorption tail in the UV spectra, is interpreted as a direct intramolecular CT excitation from the N-(4-carboxyphenyl) moiety (donor) to the trimellit moiety (acceptor). Independent of the excitation wavelength, a dominant red-shifted CT emission is observed in the fluorescence spectra. Thus, in addition to the direct CT excitation, indirect methods of CT formation exist. In concentrated solutions ground-state stable dimer formation is observed. Direct monomeric CT excitation and ground-state stable dimer excitation takes place in an overlapping energy range. The ground-state stable dimer fluorescence appears blue-shifted with respect to the monomeric CT fluorescence. Ground-state stable dimers exist that have decay times longer than those of the monomeric CT species. As a distribution of decay times is observed in the fluorescence decay curves, dimers with different decay times exist. According to the performed quantum mechanical calculations, dimers with intermolecular CT character are formed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.