Drug intervention that prevents reabsorption of circulating bile acids by the apical (ileal) sodium/bile acid cotransporter (ASBT) may be a promising new therapy for lowering of plasma cholesterol. 2164U90 is a benzothiazepine-based competitive inhibitor of bile acid transport with K(i) values of approximately 10 and 0.068 microM for the homologous human and mouse apical transporters, respectively. Hybrid human-mouse and mouse-human transporters were engineered to identify regions involved in this 150-fold difference in the inhibition constant for 2164U90. A mouse-human chimera with only the most C-terminal hydrophobic domain and the C-terminus of the transporter originating from the human variant was found to have a sensitivity to 2164U90 inhibition similar to that of the human transporter. Conversely, a human-mouse hybrid transporter encompassing the same C-terminal region from the mouse sequence but now inserted into the human sequence demonstrated the greater inhibition seen with the mouse wild type ASBT. Amino acid substitutions, individually or in combinations, of six candidate nonconserved residues between mouse and human transporters in this C-terminal domain showed replacements of Thr294 by Ser and Val295 by Ile to be responsible for the difference in the sensitivity toward 2164U90 seen between the species. The hamster apical SBAT encompassing Ser/Ile in these positions shared the lower sensitivity to 2164U90, as seen with the human ASBT, even though it is identical to the mouse SBAT in the remaining four positions of this region. In addition, the rat ASBT which is identical to the mouse ASBT in this domain also had the high sensitivity to 2164U90 inhibition found for the mouse ASBT. Methanethiosulfonates (MTS) are known to inactivate the sodium/bile acid transporters through alkylation of a cysteine in the most C-terminal hydrophobic domain (1). Inactivation of the human ASBT due to MTS modification of cysteine 270 was shown to be largely abolished when the transporter was preincubated with 2164U90, suggesting that the binding of this benzothiazepine is in the vicinity of position 270. Thus, the domain containing the two most C-terminal putative transmembrane regions of the SBATs, H8-H9, previously shown to constitute part of the binding pocket for bile acids, interacts also with the bile acid transport competitive inhibitor, 2164U90.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.