The relationship between the d(H...A) distance (A=O, N) and the topological properties at the H...A bond critical point of 37 strong (short) hydrogen bonds occurring in 26 molecular crystals are analyzed using the quantum theory of atoms in molecules (QTAIM). Ground-state wave functions of the three-dimensional periodical structures representing the accurate experimental geometries calculated at the B3LYP/6-31G** level of approximation were used to obtain the QTAIM electron density characteristics. The use of an electron-correlated method allowed us to reach the quantitatively correct values of electron density rhob at the H...A bond critical point. However, quite significant differences can appear for small absolute values of the Laplacian (<0.5 au). The difference between the H...O and H...N interactions is described using the rhob versus d(H...A) dependence. It is demonstrated that the values of parameters in this dependence are defined by the nature of the heavy atom forming the H...A bond. An intermediate (or transit) region separating the shared and closed-shell interactions is observed for the H-bonded crystals in which the bridging proton can move from one heavy atom to another. The crystalline environment changes the location of the bridging proton in strong H-bonded systems; however, the d(O-H)/d(H...O) ratio is approximately the same for both the gas-phase complexes and molecular crystals with a linear or near-linear O-H...O bond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.