A chemo- and regioselective copper-catalyzed cross-coupling procedure for amination of 2-bromobenzoic acids is described. The method eliminates the need for acid protection and produces N-aryl and N-alkyl anthranilic acid derivatives in up to 99% yield. N-(1-Pyrene)anthranilic acid has been employed in metal ion-selective fluorosensing. Titration experiments showed that this pyrene-derived amino acid forms an equimolar complex with Hg(II) in water resulting in selective fluorescence quenching even in the presence of other metal ions such as Zn(II) and Cd(II).
A chemo-and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of N-aryl anthranilic acid derivatives in up to 99%. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-tertbutylaniline. The conformational isomerism of appropriately substituted N-aryl anthranilic acids has been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans-anti-and unprecedented trans-syn-dimeric structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.