This paper describes the fabrication and characterization of ionic electretsmaterials that bear a long-lived electrostatic charge because of an imbalance between the number of cationic and anionic charges in the material. Crosslinked polystyrene microspheres that contain covalently bound ions and mobile counterions transfer some of their mobile ions in air, in the absence of bulk liquid, to another material upon contact. According to the ion-transfer model of contact electrification, this selective transfer of mobile ions yields microspheres that have a net electrostatic charge. A tool that operates on the principle of electrostatic induction measures the charge on individual microspheres (50−450 μm in diameter). Microspheres with a variety of covalently bound ionic functional groups (tetraalkylammonium, alkyltriphenylphosphonium, alkylsulfonate, and arylsulfonate) acquire charges consistent with this ion-transfer mechanism. The charge on a microsphere is proportional to its surface area (ca. 1 elementary charge per 2000 nm2) and close to the theoretical limit imposed by the dielectric breakdown of air. The charge density in an atmosphere of SF6 is more than twice that in an atmosphere of N2. These observations suggest that the charge density of these ionic electret microspheres is limited by the dielectric breakdown of the surrounding gas. Functionalizing the surfaces of glass or silicon with covalently bound ions and mobile counterions generates ionic electrets from these inorganic substrates. Soft lithography can pattern charge on a planar silicon surface (with oxide) and on the surface of 250-μm glass microspheres.
We describe an analytical system for in situ measurement of the charge that develops by contact electrification when a ferromagnetic sphere rolls on the surface of a polymer. This system makes it possible to survey the ability of polymeric surfaces to charge by contact electrification. Because the measurement of charge using this tool does not require physical contact of the charged sphere with the measuring electrode, it also enables the kinetics of charging to be examined. The research has focused on the contact charging of spheres having a core-and-shell geometry (a common core of ferromagnetic steel, and a variable shell of thin films of metals, or metals with surface oxides) rolling on the surface of polymeric slabs; it has generated an internally consistent set of data that include the polarity and magnitude of charging for a homologous series of polymers that differ chemically in the pendant group on a polyethylene backbone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.