Two-dimensional nuclear magnetic resonance (2D NMR) provides one of the foremost contemporary tools available for the elucidation of molecular structure, function, and dynamics. Execution of a 2D NMR experiment generally involves scanning a series of time-domain signals S(t(2)), as a function of a t(1) time variable which undergoes parametric incrementation throughout independent experiments. Very recently, we proposed and demonstrated a general approach whereby this serial mode of data acquisition is parallelized, enabling the acquisition of complete bidimensional NMR data sets via the recording of a single transient. The present paper discusses in more detail various conceptual and experimental aspects of this novel 2D NMR methodology. The basic principles of the approach are reviewed, various homo- and heteronuclear NMR applications are illustrated, and the main features and artifacts affecting the method are derived. Extensions to higher-dimensional experiments are also briefly noted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.