A new class of eukaryotic protein kinases that are not homologous to members of the serine/threonine/tyrosine protein kinase superfamily was recently identified [Futey, L. M., et al. (1995) J. Biol. Chem. 270, 523-529; Ryazanov, A. G., et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 4884-4889]. This class includes eukaryotic elongation factor-2 kinase, Dictyostelium myosin heavy chain kinases A, B, and C, and several mammalian putative protein kinases that are not yet fully characterized [Ryazanov, A. G., et al. (1999) Curr. Biol. 9, R43-R45]. eEF-2 kinase is a ubiquitous protein kinase that phosphorylates and inactivates eukaryotic translational elongation factor-2, and thus can modulate the rate of polypeptide chain elongation during translation. eEF-2 was the only known substrate for eEF-2 kinase. We demonstrate here that eEF-2 kinase can efficiently phosphorylate a 16-amino acid peptide, MH-1, corresponding to the myosin heavy chain kinase A phosphorylation site in Dictyostelium myosin heavy chains. This enabled us to develop a rapid assay for eEF-2 kinase activity. To localize the functional domains of eEF-2 kinase, we expressed human eEF-2 kinase in Escherichia coli as a GST-tagged fusion protein, and then performed systematic in vitro deletion mutagenesis. We analyzed eEF-2 kinase deletion mutants for the ability to autophosphorylate, and to phosphorylate eEF-2 as well as a peptide substrate, MH-1. Mutants with deletions between amino acids 51 and 335 were unable to autophosphorylate, and were also unable to phosphorylate eEF-2 and MH-1. Mutants with deletions between amino acids 521 and 725 were unable to phosphorylate eEF-2, but were still able to autophosphorylate and to phosphorylate MH-1. The kinases with deletions between amino acids 2 and 50 and 336 and 520 were able to catalyze all three reactions. In addition, the C-terminal domain expressed alone (amino acids 336-725) binds eEF-2 in a coprecipitation assay. These results suggest that eEF-2 kinase consists of two domains connected by a linker region. The amino-terminal domain contains the catalytic domain, while the carboxyl-terminal domain contains the eEF-2 targeting domain. The calmodulin-binding region is located between amino acids 51 and 96. The amino acid sequence of the carboxyl-terminal domain of eEF-2 kinase displays similarity to several proteins, all of which contain repeats of a 36-amino acid motif that we named "motif 36".
Elongation factor-2 kinase (eEF-2K) is a Ca(2+)/calmodulin-dependent protein kinase that phosphorylates and inactivates eEF-2 and that can regulate the rate of protein synthesis at the elongation stage. Here we report that a slight decrease in pH, within the range observed in vivo, leads to a dramatic activation of eEF-2K. The activity of eEF-2K in mouse liver extracts, as well as the activity of purified recombinant human eEF-2K, is low at pH 7.2-7.4 and is increased by severalfold when the pH drops to 6.6-6.8. eEF-2K requires calmodulin for activity at neutral as well as acidic pH. Kinetic studies demonstrate that the pH does not affect the K(M) for ATP or eEF-2 and activation of eEF-2K at acidic pH is due to an increase in V(max). To analyze the potential role of eEF-2K in regulating protein synthesis by pH, we constructed a mouse fibroblast cell line that expresses eEF-2K in a tetracycline-regulated manner. Overexpression of eEF-2K led to a decreased rate of protein synthesis at acidic pH, but not at neutral pH. Our results suggest that pH-dependent activation of eEF-2K may play a role in the global inhibition of protein synthesis during tissue acidosis, which accompanies such processes as hypoxia and ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.