Oxidative events that target the sugar-phosphate backbone of DNA can lead to reactive fragments that interfere with DNA repair, transcription and translation by the formation of cross-links and adducts of proteins and nucleobases. Here we report the formation of several such lesions through the aerobic degradation of an independently generated C-3'-thymidinyl radical in 2'-deoxyoligonucleotides. Individual fragments were identified by independent synthesis and comparison of retention times in high-performance liquid chromatography (HPLC) and/or matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) along with gel electrophoresis. The formation of this reactive intermediate in the presence of oxygen was found to produce 3'-phosphoglycolaldehyde (3'-PGA) as well as 3'-ketoenolether (3'-KEE), 3'-phosphoglycolate (3'-PG), and 5'-aldehyde terminated oligonucleotide fragments. Additionally, a significant outcome of C-3'-thymidinyl radical formation in DNA oligomers is a strand break resulting in one 3'- and two 5'-phosphate-terminated oligomers. These results suggest the involvement of several sugar derived reactive species upon C-3'-radical initiated scission of single-stranded DNA under aerobic conditions. The electrophilic nature of several of these products as well as their formation through a single oxidative event can make the presence of a C-3'-DNA radical more detrimental to the cell than products derived from more frequently occurring DNA sugar radicals.
The quantitative monitoring of newly synthesized species of phosphatidylcholines (PCs) and sphingomyelins (SMs) has been achieved in cultured human lens epithelial cells, both in situ and in vitro, with the use of MALDI TOF-MS. As the cells were cultured with deuterated choline-d(9), new peaks that differed from the hydrogenated species by 9.06 Da appeared in the mass spectra. The initial rates of appearance of all deuterated species of PCs were comparable and 4 times higher than those for SMs. After 12 h, those rates began to decrease for PCs but not for deuterated SMs, whose relative contents continued to increase throughout the 72 h of the experiment. The differences in initial rates are consistent with the reported initial generation of PCs, their subsequent degradation, and transfer of their headgroup, phosphorylcholine, to SMs. To further test the ability of MALDI TOF-MS to quantify changes in phospholipid (PL) metabolic pathways, myriocin, an inhibitor of SM synthesis, was added to the cells. In vitro and in situ results revealed a decrease in SMs and an unexpected increase in some PCs. With the use of other deuterated precursors and in combination with postsource decay or tandem MS/MS, this approach could allow the simultaneous tracking of the biosynthesis of multiple PL classes while providing details on their acyl chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.