A series of squaric acid-peptide conjugates were synthesized and evaluated as inhibitors of MMP-1. The cyclobut-3-enedione core was substituted at the 3-position with several functional groups, such as -N(alkyl)OH, -NHOH and -OH, that are designed to bind to the zinc atom in the active site of the metalloprotease. The 4-position of the cyclobut-3-enedione was derivatized with mono-or dipeptides that are designed to bind in the S1′ and S2′ subsites of the enzyme, and position the metal chelating group appropriately in the active site for binding to zinc. Positional scanning revealed that -N(Me) OH provided the highest level of inhibition among the chelating groups that were tested, and LeuTle-NHMe was the preferred amino acid sequence. A combination of these groups yielded an inhibitor with an IC 50 value of 95 μM. For one inhibitor, conversion of one of the carbonyl groups on the cyclobut-3-enedione core to a thiocarbonyl group resulted in a 18-fold increase in potency, and yielded a compound with an IC 50 value of 15 μM.
[structure: see text] Protein tyrosine phosphatases (PTPases) are important targets in medicinal chemistry. These enzymes play a role in a number of human diseases, including type II diabetes and infection by Yersinia pestis, the causative agent of bubonic plague. Derivatives of squaric acids such as 2-aryl-1-hydroxycyclobut-1-ene-3,4-diones represent a new class of monoanionic inhibitors for PTPases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.