The concept of hypervalency in molecules, which hold more than eight valence electrons at the central atom, still is a topic of constant debate. There is general interest in silicon compounds with more than four substituents at the central silicon atom. The dispute, whether this silicon is hypervalent or highly coordinated, is enlightened by the first experimental charge density determination and subsequent topological analysis of three different highly polar Si-E (E = N, O, F) bonds in a hexacoordinated compound. The experiment reveals predominantly ionic bonding and much less covalent contribution than commonly anticipated. For comparison gas-phase ab initio calculations were performed on this compound. The results of the theoretical calculations underline the findings of the experiment.
The regioselectivities and the reactivities (relative rates) for the ene reaction of the enophile 4-nitronitrosobenzene (ArNO) with an extensive set of regiochemically defined acyclic and cyclic olefins have been determined. These experimental data establish that the ArNO enophile attacks the olefinic substrate along the novel skew trajectory, with preferred hydrogen abstraction at the corner (twix regioselectivity). This is in contrast to the isoelectronic species singlet oxygen ((1)O(2)), which abstracts at the higher substituted side of the double-bond (cis effect), and triazolindione (TAD), which undergoes the ene reaction at the more crowded end (gem effect). Ab initio computations (B3LYP/6-31+g) for the ene reaction of the ArNO with 2-methyl-2-butene reveal that the steric effects between the aryl group of the enophile and the substituents of the olefin dictate the skew trajectory. These computations identify the aziridine N-oxide (AI) as a bona fide intermediate in this ene reaction, whose formation is usually rate-determining and, thus, irreversible along the skew trajectory (twix selectivity). The reversible generation of the AI becomes feasible when conformational constraints outweigh steric effects, as manifested by enhanced twin regioselectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.