Widely applied in confined areas communication, leaky coaxial cable (LCX) is used as an antenna to provide communication services for mobile devices. In order to improve the quality of mobile communication in narrow and long spaces such as subway or tunnel, the method of designing LCX with circular polarization radiation property is proposed, which consists of aperture's design, circular polarization simulation verification and coupling loss test. Firstly, the regular circumferential asymmetry apertures are designed and slotted in the outer conductor of the LCX to achieve radiating ϕ component of the electric field, and the optimized size of the aperture for achieving circular polarization is obtained by the simulation results from Ansoft HFSS. Then, the circular polarization characteristics in the maximum radiation direction are obtained. Further, the relation between it and the gain of the optimized aperture is analyzed. Finally, the coupling loss is calculated for evaluating the performance of the LCX. The simulation results show that the two designed LCXs have the circumferential circular polarization range of 30 ∼ 70 deg in the maximum radiation direction at 900 MHz, and the range is twice of the conventional LCX. The coupling loss indicator also meets the requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.