Abstract-The design of filter antennas with reconfigurable band stops is proposed. They are meant for employment in ultrawideband cognitive radio (UWB-CR) systems, where unlicensed users communicate using adaptive pulses that have nulls in the bands used by licensed users. Neural networks or circuits implementing the Parks-McClellan algorithm can generate such pulses. With filter antennas, reconfigurable bandstop filters are first designed, to induce adaptive nulls in UWB pulses, and are then integrated in the feed line of a UWB antenna. The advantages of this combination are discussed. The filters are based on split-ring resonators (SRRs) and complementary split-ring resonators (CSRRs). The relationship between the SRR and CSRR parameters and the stop band is also studied.
Abstract-Volumetric left-handed metamaterials made up of an array of split-ring resonators (SRRs) and wires exhibit negative index of refraction in a very narrow bandwidth due to the resonant nature of SRRs. We investigate the possible bandwidth enhancement by adding resonances to the system using fractals. The operating bandwidth of the system is increased when the additional resonances are placed close enough to each other. The Sierpiński-carpet fractal pattern is chosen as the distribution for the SRRs. The principle is demonstrated through simulations, and prototypes are fabricated and tested to verify consistency with simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.