The similarities and differences between the behavior of carbon-bound and terminal metal-bound halogens and halide ions as potential hydrogen bond acceptors has been extensively investigated through examination of many thousands of interactions present in crystal structures. Halogens in each of these environments are found to engage in hydrogen bonding, and geometric preferences for these interactions have been established. Notably, typical H···X−M angles are markedly different for X = F than for X = Cl, Br, I. Furthermore, there are significant parallels between the behavior of moderately strong hydrogen bond acceptors X−M and the much weaker acceptors X−C. The underlying reasons for the observed geometric preferences have been established by ab initio molecular orbital calculations using suitable model systems. The results are presented within the context of their potential applications in crystal engineering and supramolecular chemistry, including relevance to nucleation in halogenated solvents. The broader implications of the results in areas such as halocarbon coordination chemistry, binary metal halide solid-state chemistry, and the study of weakly coordinating anions are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.