Previously we have shown that supercritical carbon dioxide can be used to extract organics from ionic liquids (ILs). Subsequently, ionic liquids/carbon dioxide biphasic solutions have been used for a variety of homogeneously catalyzed reactions. Therefore, an understanding of the phase behavior of carbon dioxide with ionic liquids is needed to design extraction and reaction processes necessary for these applications. We present measurements of the solubility of carbon dioxide in 10 different imidazolium-based ionic liquids at 25, 40, and 60 °C and pressures to 150 bar. As expected, the solubility increases with increasing pressure and decreases with increasing temperature for all the ILs investigated. To investigate the influence of the anion, seven of the ILs studied have 1-butyl-3-methylimidazolium ([bmim]) as the cation. The anions are dicyanamide ([DCA]), nitrate ([NO3]), tetrafluoroborate ([BF4]), hexafluorophosphate ([PF6]), trifuoromethanesulfonate ([TfO]), bis(trifluoromethylsulfonyl)imide ([Tf2N]), and tris(trifluoromethylsulfonyl)methide ([methide]). The other ILs considered in the study, chosen to investigate the influence of varying number and length of alkyl chains on the cation, include 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]), 2,3-dimethyl-1-hexylimidazolium bis(trifluoromethylsulfonyl)imide ([hmmim][Tf2N]), and 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([omim][Tf2N]). Results show that the solubility of carbon dioxide is strongly dependent on the choice of anion. In particular, CO2 solubility is greater in ILs with anions, such as [Tf2N] and [methide], which contain fluoroalkyl groups. Also, we observe that an increase in the alkyl chain length on the cation increases the CO2 solubility marginally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.