Salts and cocrystals are multicomponent crystals that can be distinguished by the location of the proton between an acid and a base. At the salt end of the spectrum proton transfer is complete, and on the opposite end proton transfer is absent in cocrystals. However, for acid-base complexes with similar pK a values, the extent of proton transfer in the solid state is not predictable and a continuum exists between the two extremes. For these systems, both the ∆pK a value (pK a of base -pK a of acid) and the crystalline environment determine the extent of proton transfer. A total of 20 complexes containing theophylline and guest molecules with ∆pK a values less than 3 have been prepared, resulting in 13 cocrystals, five salts, and two complexes with mixed ionization states based on IR spectroscopy and single-crystal diffraction data. We propose modifications to the ∆pK a rule for selecting salt screen counterions that focus on the discovery of solid forms with useful physical properties rather than an arbitrary cutoff value for ∆pK a .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.