Rate constants and products for solvolyses of chlorodiphenylmethane (Ph 2 CHCl) and p-methoxybenzyl chloride in 2,2,2-trifluoroethanol (TFE)/water and TFE/ethanol are reported, along with additional kinetic data for solvolyses of tert-butyl and other alkyl halides (RX) in 97% w/w TFE/ water and in 97% w/w hexafluoropropan-2-ol/water (HFIP). Results are discussed in terms of the solvent ionizing power (Y) and the solvent nucleophilicity (N), and contributions from other solvation effects are considered. Comparisons with other S N 1 solvolyses show that solvolyses of Ph 2 CHCl in TFE mixtures are unexpectedly fast, but product ratios are unexceptional. An additional solvation effect influences solvolyses leading to delocalized cations, and a delocalized cationic transition state for concerted elimination may explain the recent results of Takeuchi et al., (J. Org. Chem. 1997, 62, 4904) without the need to postulate additional specific solvation effects for adamantyl systems, such as Bronsted-base solvation of Rand -hydrogen atoms; concerted elimination may occur because simple tertiary alkyl cations are too unstable to form in predominantly aqueous media. Iodide/bromide and bromide/chloride rate ratios are very similar for 1-adamantyl halides and corresponding solvolyses of tert-butyl halides; these ratios decrease in the order aq EtOH > TFE > HFIP, as expected for an electrophilic solvation effect (this effect can readily be incorporated into Y values). From kinetic data for a series of tertiary alkyl chlorides in 97% TFE/water, it is shown that the susceptibility of rates of solvolyses of RCl to N decreases with an increase in steric hindrance or with an increase in charge stabilization. Also, the small kinetic solvent isotope effects for typical solvolyses (e.g., methyl tosylate) indicate that nucleophilic attack lags behind heterolysis of the C-X bond. 4654
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.